Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Control Release ; 367: 821-836, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360178

RESUMEN

The clinical development of tyrosine kinase inhibitors (TKI) has led to great strides in improving the survival of chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) patients. But even the new generation TKIs are rendered futile in the face of evolving landscape of acquired mutations leading to drug resistance, necessitating the pursuit of alternative therapeutic approaches. In contrast to exploiting proteins as targets like most conventional drugs and TKIs, RNA Interference (RNAi) exerts its therapeutic action towards disease-driving aberrant genes. To realize the potential of RNAi, the major challenge is to efficiently deliver the therapeutic mediator of RNAi, small interfering RNA (siRNA) molecules. In this study, we explored the feasibility of using aliphatic lipid (linoleic acid and lauric acid)-grafted polymers (lipopolymers) for the delivery of siRNAs against the FLT3 oncogene in AML and BCR-ABL oncogene in CML. The lipopolymer delivered siRNA potently suppressed the proliferation AML and CML cells via silencing of the targeted oncogenes. In both AML and CML subcutaneous xenografts generated in NCG mice, intravenously administered lipopolymer/siRNA complexes displayed significant inhibitory effect on tumor growth. Combining siFLT3 complexes with gilteritinib allowed for reduction of effective drug dosage, longer duration of remission, and enhanced survival after relapse, compared to gilteritinib monotherapy. Anti-leukemic activity of siBCR-ABL complexes was similar in wild-type and TKI-resistant cells, and therapeutic efficacy was confirmed in vivo through prolonged survival of the NCG hosts systemically implanted with TKI-resistant cells. These results demonstrate the preclinical efficacy of lipopolymer facilitated siRNA delivery, providing a novel therapeutic platform for myeloid leukemias.


Asunto(s)
Compuestos de Anilina , Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide Aguda , Pirazinas , Humanos , Animales , Ratones , ARN Interferente Pequeño , Proteínas de Fusión bcr-abl/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Oncogenes , Modelos Animales , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a Antineoplásicos
2.
Biotechnol Bioeng ; 121(5): 1503-1517, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372658

RESUMEN

The piggyBac transposon/transposase system has been explored for long-term, stable gene expression to execute genomic integration of therapeutic genes, thus emerging as a strong alternative to viral transduction. Most studies with piggyBac transposition have employed physical methods for successful delivery of the necessary components of the piggyBac system into the cells. Very few studies have explored polymeric gene delivery systems. In this short communication, we report an effective delivery system based on low molecular polyethylenimine polymer with lipid substitution (PEI-L) capable of delivering three components, (i) a piggyBac transposon plasmid DNA carrying a gene encoding green fluorescence protein (PB-GFP), (ii) a piggyBac transposase plasmid DNA or mRNA, and (iii) a 2 kDa polyacrylic acid as additive for transfection enhancement, all in a single complex. We demonstrate an optimized formulation for stable GFP expression in two model cell lines, MDA-MB-231 and SUM149 recorded till day 108 (3.5 months) and day 43 (1.4 months), respectively, following a single treatment with very low cell number as starting material. Moreover, the stability of the transgene (GFP) expression mediated by piggyBac/PEI-L transposition was retained following three consecutive cryopreservation cycles. The success of this study highlights the feasibility and potential of employing a polymeric delivery system to obtain piggyBac-based stable expression of therapeutic genes.


Asunto(s)
ADN , Técnicas de Transferencia de Gen , Plásmidos , Línea Celular , Proteínas Fluorescentes Verdes/genética , Transposasas/genética , Transposasas/metabolismo , Elementos Transponibles de ADN/genética , Vectores Genéticos
3.
ACS Biomater Sci Eng ; 10(3): 1589-1606, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38336625

RESUMEN

Low molecular weight polyethylenimine (PEI) based lipopolymers become an attractive strategy to construct nonviral therapeutic carriers with promising transfection efficiency and minimal toxicity. Herein, this paper presents the design and synthesis of novel farnesol (Far) conjugated PEI, namely PEI1.2k-SA-Far7. The polymers had quick DNA complexation, effective DNA unpacking (dissociation), and cellular uptake abilities when complexed with plasmid DNA. However, they were unable to provide robust transfection in culture, indicating inability of Far grafting to improve the transfection efficacy significantly. To overcome this limitation, the commercially available polyanionic Trans-Booster additive, which is capable of displaying electrostatic interaction with PEI1.2k-SA-Far7, has been used to enhance the uptake of pDNA polyplexes and transgene expression. pDNA condensation was successfully achieved in the presence of the Trans-Booster with more stable polyplexes, and in vitro transfection efficacy of the polyplexes was improved to be comparable to that obtained with an established reference reagent. The PEI1.2k-SA-Far7/pDNA/Trans-Booster ternary complex exhibited good compatibility with cells and minimal hemolysis activity. This work demonstrates the exemplary potency of using additives in polyplexes and the potential of resultant ternary complexes for effective pDNA delivery.


Asunto(s)
Técnicas de Transferencia de Gen , Polietileneimina , Polietileneimina/farmacología , Farnesol , ADN/genética , ADN/metabolismo , Transfección
5.
Mol Pharm ; 21(3): 1436-1449, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38291705

RESUMEN

Small interfering RNAs (siRNAs) have emerged as a powerful tool to manipulate gene expression in vitro. However, their potential therapeutic application encounters significant challenges, such as degradation in vivo, limited cellular uptake, and restricted biodistribution, among others. This study evaluates the siRNA delivery efficiency of three different lipid-substituted polyethylenimine (PEI)-based carriers, named Leu-Fect A-C, to different organs in vivo, including xenograft tumors, when injected into the bloodstream of mice. The siRNA analysis was undertaken by stem-loop RT-PCR, followed by qPCR or digital droplet PCR. Formulating siRNAs with a Leu-Fect series of carriers generated nanoparticles that effectively delivered the siRNAs into K652 and MV4-11 cells, both models of leukemia. The Leu-Fect carriers were able to successfully deliver BCR-Abl and FLT3 siRNAs into leukemia xenograft tumors in mice. All three carriers demonstrated significantly enhanced siRNA delivery into organs other than the liver, including the xenograft tumors. Preferential biodistribution of siRNAs was observed in the lungs and spleen. Among the delivery systems, Leu-Fect A exhibited the highest biodistribution into organs. In conclusion, lipid-substituted PEI-based delivery systems offer improvements in addressing pharmacokinetic challenges associated with siRNA-based therapies, thus opening avenues for their potential translation into clinical practice.


Asunto(s)
Leucemia , Neoplasias , Humanos , Ratones , Animales , ARN Interferente Pequeño/genética , Polietileneimina , Distribución Tisular , Leucemia/genética , Leucemia/terapia , Lípidos
6.
Nanomaterials (Basel) ; 13(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38133064

RESUMEN

We investigated the feasibility of using siRNA therapy for acute myeloid leukemia (AML) by developing macromolecular carriers that facilitated intracellular delivery of siRNA. The carriers were derived from low-molecular-weight (<2 kDa) polyethyleneimine (PEI) and modified with a range of aliphatic lipids. We identified linoleic acid and lauric acid-modified PEI as optimal carriers for siRNA delivery to AML cell lines KG1 and KG1a, as well as AML patient-derived mononuclear cells. As they have been proven to be potent targets in the treatment of AML, we examined the silencing of BCL2L12 and survivin and showed how it leads to the decrease in proliferation of KG1 and stem-cell-like KG1a cells. By optimizing the transfection schedule, we were able to enhance the effect of the siRNAs on proliferation over a period of 10 days. We additionally showed that with proper modifications of PEI, other genes, including MAP2K3, CDC20, and SOD-1, could be targeted to decrease the proliferation of AML cells. Our studies demonstrated the versatility of siRNA delivery with modified PEI to elicit an effect in leukemic cells that are difficult to transfect, offering an alternative to conventional drugs for more precise and targeted treatment options.

7.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA