Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 20(1): e2305289, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649146

RESUMEN

Green fuel from water splitting is hardcore for future generations, and the limited source of fresh water (<1%) is a bottleneck. Seawater cannot be used directly as a feedstock in current electrolyzer techniques. Until now single atom catalysts were reported by many synthetic strategies using notorious chemicals and harsh conditions. A cobalt single-atom (CoSA) intruding cobalt oxide ultrasmall nanoparticle (Co3 O4 USNP)-intercalated porous carbon (PC) (CoSA-Co3 O4 @PC) electrocatalyst was synthesized from the waste orange peel as a single feedstock (solvent/template). The extended X-ray absorption fine structure spectroscopy (EXAFS) and theoretical fitting reveal a clear picture of the coordination environment of the CoSA sites (CoSA-Co3 O4 and CoSA-N4 in PC). To impede the direct seawater corrosion and chlorine evolution the seawater has been desalinated (Dseawater) with minimal cost and the obtained PC is used as an adsorbent in this process. CoSA-Co3 O4 @PC shows high oxygen evolution reaction (OER) activity in transitional metal impurity-free (TMIF) 1 M KOH and alkaline Dseawater. CoSA-Co3 O4 @PC exhibits mass activity that is 15 times higher than the commercial RuO2 . Theoretical interpretations suggest that the optimized CoSA sites in Co3 O4 USNPs reduce the energy barrier for alkaline water dissociation and simultaneously trigger an excellent OER followed by an adsorbate evolution mechanism (AEM).

2.
J Phys Chem Lett ; 13(20): 4530-4537, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35576271

RESUMEN

To tune single-atom catalysts (SACs) for effective nitrogen reduction reaction (NRR), we investigate various transition metals implanted on boron-arsenide (BAs), boron-phosphide (BP), and boron-antimony (BSb) using density functional theory (DFT). Interestingly, W-BAs shows high catalytic activity and excellent selectivity with an insignificant barrier of only 0.05 eV along the distal pathway and a surmountable kinetic barrier of 0.34 eV. The W-BSb and Mo-BSb exhibit high performances with limiting potentials of -0.19 and -0.34 V. The Bader-charge descriptor reveals that the charge transfers from substrate to *NNH in the first protonation step and from *NH3 to substrate in the last protonation step, circumventing a big hurdle in NRR by achieving negative free energy change of *NH2 to *NH3. Furthermore, machine learning (ML) descriptors are introduced to reduce computational cost. Our rational design meets the three critical prerequisites of chemisorbing N2 molecules, stabilizing *NNH, and destabilizing *NH2 adsorbates for high-efficiency NRR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA