RESUMEN
Additive Manufacturing (AM) Direct Laser Fabrication (DLF) of Ti-5Al-5V-5Mo-3Cr (Ti5553) is being developed as a method for producing aircraft components. The additive manufacturing process can produce flaws near the surface, such as porosity and material voids, which act as stress raisers, leading to potential component failure. Eddy current testing was investigated to detect flaws on or near the surface of DLF Ti5553 bar samples. For this application, the objective was to develop an eddy current probe capable of detecting flaws 500 µm in diameter, located 1 mm below the component's surface. Two initial sets of coil parameters were chosen: The first, based on successful experiments that demonstrated detection of a near surface flaw in Ti5553 using a transmit-receive array probe, and the second, derived from simulation by Finite Element Method (FEM). An optimized transmit receive coil design, based on the FEM simulations, was constructed. The probe was evaluated on Ti5553 samples containing sub-surface voids of the target size, as well as samples with side-drilled holes and samples with holes drilled from the opposing inspection surface. The probe was able to effectively detect 80% of the sub-surface voids. Limitations included the probe's inability to detect sub-surface voids near sample edges and a sensitivity to surface roughness, which produces local changes in lift-off. Multifrequency mixing improved signal-to-noise ratio when surface roughness was present on average by 22%. A probe based on that described in this paper could benefit quality assurance of additively manufactured aircraft components.
RESUMEN
We set out to identify the origins of the Árpád Dynasty based on genome sequencing of DNA derived from the skeletal remains of Hungarian King Béla III (1172-1196) and eight additional individuals (six males, two females) originally interred at the Royal Basilica of Székesfehérvár. Y-chromosome analysis established that two individuals, Béla III and HU52 assign to haplogroups R-Z2125 whose distribution centres near South Central Asia with subsidiary expansions in the regions of modern Iran, the Volga Ural region and the Caucasus. Out of a cohort of 4340 individuals from these geographic areas, we acquired whole-genome data from 208 individuals derived for the R-Z2123 haplogroup. From these data we have established that the closest living kin of the Árpád Dynasty are R-SUR51 derived modern day Bashkirs predominantly from the Burzyansky and Abzelilovsky districts of Bashkortostan in the Russian Federation. Our analysis also reveals the existence of SNPs defining a novel Árpád Dynasty specific haplogroup R-ARP. Framed within the context of a high resolution R-Z2123 phylogeny, the ancestry of the first Hungarian royal dynasty traces to the region centering near Northern Afghanistan about 4500 years ago and identifies the Bashkirs as their closest kin, with a separation date between the two populations at the beginning of the first millennium CE.
Asunto(s)
Cromosomas Humanos Y/genética , Personajes , Linaje , Filogenia , Polimorfismo de Nucleótido Simple , Femenino , Migración Humana , Humanos , Hungría , Masculino , Análisis de Secuencia de ADN/métodosRESUMEN
Red cell polymorphisms can provide evidence of human migration and adaptation patterns. In Eurasia, the distribution of Diego blood group system polymorphisms remains unaddressed. To shed light on the dispersal of the Dia antigen, we performed analyses of correlations between the frequencies of DI*01 allele, C2-M217 and C2-M401 Y-chromosome haplotypes ascribed as being of Mongolian-origin and language affiliations, in 75 Eurasian populations including DI*01 frequency data from the HGDP-CEPH panel. We revealed that DI*01 reaches its highest frequency in Mongolia, Turkmenistan and Kyrgyzstan, expanding southward and westward across Asia with Altaic-speaking nomadic carriers of C2-M217, and even more precisely C2-M401, from their homeland presumably in Mongolia, between the third century BCE and the thirteenth century CE. The present study has highlighted the gene-culture co-migration with the demographic movements that occurred during the past two millennia in Central and East Asia. Additionally, this work contributes to a better understanding of the distribution of immunogenic erythrocyte polymorphisms with a view to improve transfusion safety.
Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/genética , Pueblo Asiatico/genética , Migración Humana , Polimorfismo Genético , Asia , Cromosomas Humanos Y/genética , Femenino , Haplotipos , Humanos , MasculinoRESUMEN
The rarity of human remains makes it difficult to apprehend the first settlements in Corsica. It is admitted that initial colonization could have occurred during the Mesolithic period when glaciations would have shortened the open water travel distance from the continent. Mesolithic sites in Corsica show relatively short and irregular occupation, and suggest discontinuous settling of very mobile groups probably traveling by boat. Previous genetic studies on Corsican populations showed internal differentiation and a relatively poor genetic relationship with continental populations, despite intense historical contacts, however local Mesolithic-based genetic inheritance has never been properly estimated. The aim of this study was to explore the Corsican genetic profile of Y-chromosomes in order to trace the genetic signatures back to the first migrations to Corsica. This study included 321 samples from men throughout Corsica; samples from Provence and Tuscany were added to the cohort. All samples were typed for 92 Y-SNPs, and Y-STRs were also analyzed. Results revealed highly differentiated haplogroup patterns among Corsican populations. Haplogroup G had the highest frequency in Corsica, mostly displaying a unique Y-STR profile. When compared with Provence and Tuscany, Corsican populations displayed limited genetic proximity. Corsican populations present a remarkable Y-chromosome genetic mixture. Although the Corsican Y-chromosome profile shows similarities with both Provence and to a lesser extent Tuscany, it mainly displays its own specificity. This study confirms the high level of genetic diversity in Corsican populations and backs genetic contributions from prehistoric migrations associated with the Mesolithic, Neolithic and Metal Age eras, rather than from historical movements to Corsica, respectively attested by frequencies and TMRCA of haplogroups G2a-L91 and G2a-P15, J2a-M241 and J2-DYS445 = 6, R1b-U152 and R1b-U106. These results suggest that marine routes to reach the Corsican coast in many different points may have led to such a genetic heterogeneity.
Asunto(s)
Cromosomas Humanos Y/genética , Variación Genética , Migración Humana , Cromosomas Humanos Y/clasificación , Francia , Frecuencia de los Genes , Haplotipos , Humanos , Región Mediterránea , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Población Blanca/genéticaRESUMEN
The extent to which prehistoric migrations of farmers influenced the genetic pool of western North Africans remains unclear. Archaeological evidence suggests that the Neolithization process may have happened through the adoption of innovations by local Epipaleolithic communities or by demic diffusion from the Eastern Mediterranean shores or Iberia. Here, we present an analysis of individuals' genome sequences from Early and Late Neolithic sites in Morocco and from Early Neolithic individuals from southern Iberia. We show that Early Neolithic Moroccans (â¼5,000 BCE) are similar to Later Stone Age individuals from the same region and possess an endemic element retained in present-day Maghrebi populations, confirming a long-term genetic continuity in the region. This scenario is consistent with Early Neolithic traditions in North Africa deriving from Epipaleolithic communities that adopted certain agricultural techniques from neighboring populations. Among Eurasian ancient populations, Early Neolithic Moroccans are distantly related to Levantine Natufian hunter-gatherers (â¼9,000 BCE) and Pre-Pottery Neolithic farmers (â¼6,500 BCE). Late Neolithic (â¼3,000 BCE) Moroccans, in contrast, share an Iberian component, supporting theories of trans-Gibraltar gene flow and indicating that Neolithization of North Africa involved both the movement of ideas and people. Lastly, the southern Iberian Early Neolithic samples share the same genetic composition as the Cardial Mediterranean Neolithic culture that reached Iberia â¼5,500 BCE. The cultural and genetic similarities between Iberian and North African Neolithic traditions further reinforce the model of an Iberian migration into the Maghreb.
Asunto(s)
Etnicidad/genética , Genoma Humano , Migración Humana/historia , África del Norte , Agricultura/historia , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Etnicidad/historia , Europa (Continente) , Flujo Génico , Biblioteca de Genes , Genética de Población , Historia Antigua , Humanos , Medio Oriente , Marruecos , Análisis de Secuencia de ADN , España/etnologíaRESUMEN
The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3'6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity.
Asunto(s)
Cromosomas Humanos Y/genética , Haplotipos/genética , Lenguaje , Asia , Europa (Continente) , Humanos , Filogeografía , Factores de TiempoRESUMEN
We report the sequences of 1,244 human Y chromosomes randomly ascertained from 26 worldwide populations by the 1000 Genomes Project. We discovered more than 65,000 variants, including single-nucleotide variants, multiple-nucleotide variants, insertions and deletions, short tandem repeats, and copy number variants. Of these, copy number variants contribute the greatest predicted functional impact. We constructed a calibrated phylogenetic tree on the basis of binary single-nucleotide variants and projected the more complex variants onto it, estimating the number of mutations for each class. Our phylogeny shows bursts of extreme expansion in male numbers that have occurred independently among each of the five continental superpopulations examined, at times of known migrations and technological innovations.
Asunto(s)
Cromosomas Humanos Y , Demografía , Haplotipos , Humanos , Masculino , Mutación , Filogenia , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: The archeological record indicates that the permanent settlement of Cyprus began with pioneering agriculturalists circa 11,000 years before present, (ca. 11,000 y BP). Subsequent colonization events followed, some recognized regionally. Here, we assess the Y-chromosome structure of Cyprus in context to regional populations and correlate it to phases of prehistoric colonization. RESULTS: Analysis of haplotypes from 574 samples showed that island-wide substructure was barely significant in a spatial analysis of molecular variance (SAMOVA). However, analyses of molecular variance (AMOVA) of haplogroups using 92 binary markers genotyped in 629 Cypriots revealed that the proportion of variance among the districts was irregularly distributed. Principal component analysis (PCA) revealed potential genetic associations of Greek-Cypriots with neighbor populations. Contrasting haplogroups in the PCA were used as surrogates of parental populations. Admixture analyses suggested that the majority of G2a-P15 and R1b-M269 components were contributed by Anatolia and Levant sources, respectively, while Greece Balkans supplied the majority of E-V13 and J2a-M67. Haplotype-based expansion times were at historical levels suggestive of recent demography. CONCLUSIONS: Analyses of Cypriot haplogroup data are consistent with two stages of prehistoric settlement. E-V13 and E-M34 are widespread, and PCA suggests sourcing them to the Balkans and Levant/Anatolia, respectively. The persistent pre-Greek component is represented by elements of G2-U5(xL30) haplogroups: U5*, PF3147, and L293. J2b-M205 may contribute also to the pre-Greek strata. The majority of R1b-Z2105 lineages occur in both the westernmost and easternmost districts. Distinctively, sub-haplogroup R1b- M589 occurs only in the east. The absence of R1b- M589 lineages in Crete and the Balkans and the presence in Asia Minor are compatible with Late Bronze Age influences from Anatolia rather than from Mycenaean Greeks.
RESUMEN
R1a-M420 is one of the most widely spread Y-chromosome haplogroups; however, its substructure within Europe and Asia has remained poorly characterized. Using a panel of 16 244 male subjects from 126 populations sampled across Eurasia, we identified 2923 R1a-M420 Y-chromosomes and analyzed them to a highly granular phylogeographic resolution. Whole Y-chromosome sequence analysis of eight R1a and five R1b individuals suggests a divergence time of â¼25,000 (95% CI: 21,300-29,000) years ago and a coalescence time within R1a-M417 of â¼5800 (95% CI: 4800-6800) years. The spatial frequency distributions of R1a sub-haplogroups conclusively indicate two major groups, one found primarily in Europe and the other confined to Central and South Asia. Beyond the major European versus Asian dichotomy, we describe several younger sub-haplogroups. Based on spatial distributions and diversity patterns within the R1a-M420 clade, particularly rare basal branches detected primarily within Iran and eastern Turkey, we conclude that the initial episodes of haplogroup R1a diversification likely occurred in the vicinity of present-day Iran.
Asunto(s)
Alelos , Cromosomas Humanos Y , Haplotipos , Filogenia , Filogeografía , Asia , Etnicidad/genética , Europa (Continente) , Evolución Molecular , Frecuencia de los Genes , Ligamiento Genético , Humanos , Masculino , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Análisis EspacialRESUMEN
Genome sequencing of the 5,300-year-old mummy of the Tyrolean Iceman, found in 1991 on a glacier near the border of Italy and Austria, has yielded new insights into his origin and relationship to modern European populations. A key finding of that study was an apparent recent common ancestry with individuals from Sardinia, based largely on the Y chromosome haplogroup and common autosomal SNP variation. Here, we compiled and analyzed genomic datasets from both modern and ancient Europeans, including genome sequence data from over 400 Sardinians and two ancient Thracians from Bulgaria, to investigate this result in greater detail and determine its implications for the genetic structure of Neolithic Europe. Using whole-genome sequencing data, we confirm that the Iceman is, indeed, most closely related to Sardinians. Furthermore, we show that this relationship extends to other individuals from cultural contexts associated with the spread of agriculture during the Neolithic transition, in contrast to individuals from a hunter-gatherer context. We hypothesize that this genetic affinity of ancient samples from different parts of Europe with Sardinians represents a common genetic component that was geographically widespread across Europe during the Neolithic, likely related to migrations and population expansions associated with the spread of agriculture.
Asunto(s)
Fósiles , Genética de Población , Genoma Humano , Europa (Continente) , Femenino , Humanos , Polimorfismo de Nucleótido SimpleRESUMEN
Previous Y-chromosome studies have demonstrated that Ashkenazi Levites, members of a paternally inherited Jewish priestly caste, display a distinctive founder event within R1a, the most prevalent Y-chromosome haplogroup in Eastern Europe. Here we report the analysis of 16 whole R1 sequences and show that a set of 19 unique nucleotide substitutions defines the Ashkenazi R1a lineage. While our survey of one of these, M582, in 2,834 R1a samples reveals its absence in 922 Eastern Europeans, we show it is present in all sampled R1a Ashkenazi Levites, as well as in 33.8% of other R1a Ashkenazi Jewish males and 5.9% of 303 R1a Near Eastern males, where it shows considerably higher diversity. Moreover, the M582 lineage also occurs at low frequencies in non-Ashkenazi Jewish populations. In contrast to the previously suggested Eastern European origin for Ashkenazi Levites, the current data are indicative of a geographic source of the Levite founder lineage in the Near East and its likely presence among pre-Diaspora Hebrews.
Asunto(s)
Cromosomas Humanos Y , Frecuencia de los Genes , Haplotipos , Judíos/genética , Filogenia , Europa Oriental , Variación Genética , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADNRESUMEN
Despite being located at the crossroads of Asia, genetics of the Afghanistan populations have been largely overlooked. It is currently inhabited by five major ethnic populations: Pashtun, Tajik, Hazara, Uzbek and Turkmen. Here we present autosomal from a subset of our samples, mitochondrial and Y- chromosome data from over 500 Afghan samples among these 5 ethnic groups. This Afghan data was supplemented with the same Y-chromosome analyses of samples from Iran, Kyrgyzstan, Mongolia and updated Pakistani samples (HGDP-CEPH). The data presented here was integrated into existing knowledge of pan-Eurasian genetic diversity. The pattern of genetic variation, revealed by structure-like and Principal Component analyses and Analysis of Molecular Variance indicates that the people of Afghanistan are made up of a mosaic of components representing various geographic regions of Eurasian ancestry. The absence of a major Central Asian-specific component indicates that the Hindu Kush, like the gene pool of Central Asian populations in general, is a confluence of gene flows rather than a source of distinctly autochthonous populations that have arisen in situ: a conclusion that is reinforced by the phylogeography of both haploid loci.
Asunto(s)
Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Etnicidad/genética , Flujo Génico , Afganistán/etnología , Análisis de Varianza , Asia/etnología , Pueblo Asiatico/genética , ADN Mitocondrial/química , ADN Mitocondrial/clasificación , Europa (Continente)/etnología , Variación Genética , Genética de Población/métodos , Geografía , Haplotipos , Humanos , Filogenia , Filogeografía/métodos , Análisis de Componente Principal , Análisis de Secuencia de ADN , Población Blanca/genéticaRESUMEN
The Y chromosome and the mitochondrial genome have been used to estimate when the common patrilineal and matrilineal ancestors of humans lived. We sequenced the genomes of 69 males from nine populations, including two in which we find basal branches of the Y-chromosome tree. We identify ancient phylogenetic structure within African haplogroups and resolve a long-standing ambiguity deep within the tree. Applying equivalent methodologies to the Y chromosome and the mitochondrial genome, we estimate the time to the most recent common ancestor (T(MRCA)) of the Y chromosome to be 120 to 156 thousand years and the mitochondrial genome T(MRCA) to be 99 to 148 thousand years. Our findings suggest that, contrary to previous claims, male lineages do not coalesce significantly more recently than female lineages.
Asunto(s)
Cromosomas Humanos Y/clasificación , Cromosomas Humanos Y/genética , Variación Genética , Población Negra/genética , Evolución Molecular , Femenino , Genoma Mitocondrial/genética , Haploidia , Humanos , Masculino , Mutación , Filogenia , Análisis de Secuencia de ADN , Factores de TiempoRESUMEN
The Samaritans are a group of some 750 indigenous Middle Eastern people, about half of whom live in Holon, a suburb of Tel Aviv, and the other half near Nablus. The Samaritan population is believed to have numbered more than a million in late Roman times but less than 150 in 1917. The ancestry of the Samaritans has been subject to controversy from late Biblical times to the present. In this study, liquid chromatography/electrospray ionization/quadrupole ion trap mass spectrometry was used to allelotype 13 Y-chromosomal and 15 autosomal microsatellites in a sample of 12 Samaritans chosen to have as low a level of relationship as possible, and 461 Jews and non-Jews. Estimation of genetic distances between the Samaritans and seven Jewish and three non-Jewish populations from Israel, as well as populations from Africa, Pakistan, Turkey, and Europe, revealed that the Samaritans were closely related to Cohanim. This result supports the position of the Samaritans that they are descendants from the tribes of Israel dating to before the Assyrian exile in 722-720 BCE. In concordance with previously published single-nucleotide polymorphism haplotypes, each Samaritan family, with the exception of the Samaritan Cohen lineage, was observed to carry a distinctive Y-chromosome short tandem repeat haplotype that was not more than one mutation removed from the six-marker Cohen modal haplotype.
Asunto(s)
Cromosomas Humanos Y/genética , Judíos/genética , Repeticiones de Microsatélite/genética , Variación Genética/genética , Genética de Población , Genotipo , Historia Antigua , Humanos , Israel/etnología , Judíos/historia , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
Linguistic and genetic studies on Roma populations inhabited in Europe have unequivocally traced these populations to the Indian subcontinent. However, the exact parental population group and time of the out-of-India dispersal have remained disputed. In the absence of archaeological records and with only scanty historical documentation of the Roma, comparative linguistic studies were the first to identify their Indian origin. Recently, molecular studies on the basis of disease-causing mutations and haploid DNA markers (i.e. mtDNA and Y-chromosome) supported the linguistic view. The presence of Indian-specific Y-chromosome haplogroup H1a1a-M82 and mtDNA haplogroups M5a1, M18 and M35b among Roma has corroborated that their South Asian origins and later admixture with Near Eastern and European populations. However, previous studies have left unanswered questions about the exact parental population groups in South Asia. Here we present a detailed phylogeographical study of Y-chromosomal haplogroup H1a1a-M82 in a data set of more than 10,000 global samples to discern a more precise ancestral source of European Romani populations. The phylogeographical patterns and diversity estimates indicate an early origin of this haplogroup in the Indian subcontinent and its further expansion to other regions. Tellingly, the short tandem repeat (STR) based network of H1a1a-M82 lineages displayed the closest connection of Romani haplotypes with the traditional scheduled caste and scheduled tribe population groups of northwestern India.
Asunto(s)
Cromosomas Humanos Y , Etnicidad/genética , Haplotipos , Repeticiones de Microsatélite , Filogeografía , Población Blanca/genética , Asia , ADN Mitocondrial , Europa (Continente) , Humanos , FilogeniaRESUMEN
The genetic characterization of Native Mexicans is important to understand multiethnic based features influencing the medical genetics of present Mexican populations, as well as to the reconstruct the peopling of the Americas. We describe the Y-chromosome genetic diversity of 197 Native Mexicans from 11 populations and 1,044 individuals from 44 Native American populations after combining with publicly available data. We found extensive heterogeneity among Native Mexican populations and ample segregation of Q-M242* (46%) and Q-M3 (54%) haplogroups within Mexico. The northernmost sampled populations falling outside Mesoamerica (Pima and Tarahumara) showed a clear differentiation with respect to the other populations, which is in agreement with previous results from mtDNA lineages. However, our results point toward a complex genetic makeup of Native Mexicans whose maternal and paternal lineages reveal different narratives of their population history, with sex-biased continental contributions and different admixture proportions. At a continental scale, we found that Arctic populations and the northernmost groups from North America cluster together, but we did not find a clear differentiation within Mesoamerica and the rest of the continent, which coupled with the fact that the majority of individuals from Central and South American samples are restricted to the Q-M3 branch, supports the notion that most Native Americans from Mesoamerica southwards are descendants from a single wave of migration. This observation is compatible with the idea that present day Mexico might have constituted an area of transition in the diversification of paternal lineages during the colonization of the Americas.
Asunto(s)
Cromosomas Humanos Y , Indígenas Norteamericanos/genética , Américas , Variación Genética , Haplotipos/genética , Humanos , Indígenas Norteamericanos/estadística & datos numéricos , Masculino , México , Repeticiones de Microsatélite , FilogeniaRESUMEN
Haplogroup G, together with J2 clades, has been associated with the spread of agriculture, especially in the European context. However, interpretations based on simple haplogroup frequency clines do not recognize underlying patterns of genetic diversification. Although progress has been recently made in resolving the haplogroup G phylogeny, a comprehensive survey of the geographic distribution patterns of the significant sub-clades of this haplogroup has not been conducted yet. Here we present the haplogroup frequency distribution and STR variation of 16 informative G sub-clades by evaluating 1472 haplogroup G chromosomes belonging to 98 populations ranging from Europe to Pakistan. Although no basal G-M201* chromosomes were detected in our data set, the homeland of this haplogroup has been estimated to be somewhere nearby eastern Anatolia, Armenia or western Iran, the only areas characterized by the co-presence of deep basal branches as well as the occurrence of high sub-haplogroup diversity. The P303 SNP defines the most frequent and widespread G sub-haplogroup. However, its sub-clades have more localized distribution with the U1-defined branch largely restricted to Near/Middle Eastern and the Caucasus, whereas L497 lineages essentially occur in Europe where they likely originated. In contrast, the only U1 representative in Europe is the G-M527 lineage whose distribution pattern is consistent with regions of Greek colonization. No clinal patterns were detected suggesting that the distributions are rather indicative of isolation by distance and demographic complexities.
Asunto(s)
Cromosomas Humanos 21-22 e Y/genética , Cromosomas Humanos Y/genética , Filogenia , Población Blanca/genética , Armenia , Cromosomas Humanos 21-22 e Y/clasificación , Cromosomas Humanos Y/clasificación , Europa (Continente) , Evolución Molecular , Frecuencia de los Genes , Humanos , Medio Oriente , Polimorfismo de Nucleótido SimpleRESUMEN
Central Asia has served as a corridor for human migrations providing trading routes since ancient times. It has functioned as a conduit connecting Europe and the Middle East with South Asia and far Eastern civilizations. Therefore, the study of populations in this region is essential for a comprehensive understanding of early human dispersal on the Eurasian continent. Although Y- chromosome distributions in Central Asia have been widely surveyed, present-day Afghanistan remains poorly characterized genetically. The present study addresses this lacuna by analyzing 190 Pathan males from Afghanistan using high-resolution Y-chromosome binary markers. In addition, haplotype diversity for its most common lineages (haplogroups R1a1a*-M198 and L3-M357) was estimated using a set of 15 Y-specific STR loci. The observed haplogroup distribution suggests some degree of genetic isolation of the northern population, likely due to the Hindu Kush mountain range separating it from the southern Afghans who have had greater contact with neighboring Pathans from Pakistan and migrations from the Indian subcontinent. Our study demonstrates genetic similarities between Pathans from Afghanistan and Pakistan, both of which are characterized by the predominance of haplogroup R1a1a*-M198 (>50%) and the sharing of the same modal haplotype. Furthermore, the high frequencies of R1a1a-M198 and the presence of G2c-M377 chromosomes in Pathans might represent phylogenetic signals from Khazars, a common link between Pathans and Ashkenazi groups, whereas the absence of E1b1b1a2-V13 lineage does not support their professed Greek ancestry.
Asunto(s)
Cromosomas Humanos Y/genética , Afganistán/etnología , Etnicidad/genética , Frecuencia de los Genes , Haplotipos , Humanos , Masculino , Repeticiones de Microsatélite , Filogenia , Polimorfismo de Nucleótido SimpleRESUMEN
A reference Y-chromosome short tandem repeat (STR) haplotype database is needed for Y-STR match interpretation as well as for national and regional characterization of populations. The aim of this study was to create a comprehensive Y-STR haplotype database of the Croatian contemporary population and to analyze substructure between the five Croatian regions. We carried out a statistical analysis of the data from previously performed genetic analyses collected during routine forensic work by the Forensic Science Centre "Ivan Vucetic". A total of 1,100 unrelated men from eastern, western, northern, southern and central Croatia were selected for the purpose of this study. Y-STRs were typed using the AmpFISTR Yfiler PCR amplification kit. Analysis of molecular variance calculated with the Y chromosome haplotype reference database online analysis tool included 16 population samples with 20,247 haplotypes. A total of 947 haplotypes were recorded, 848 of which were unique (89.5%). Haplotype diversity was 0.998, with the most frequent haplotype found in 9 of 1,100 men (0.82%). Locus diversity varied from 0.266 for DYS392 to 0.868 for DYS385. Discrimination capacity was 86.1%. Our results suggested high level of similarity among regional subpopulations within Croatia, except for mildly different southern Croatia. Relative resemblance was found with Bosnia and Herzegovina and Serbia. Whit Atheys' Haplogroup Predictor was used to estimate the frequencies of Y-chromosome haplogroups. I2a, R1a, E1b1b and R1b haplogroups were most frequent in all Croatian regions. These results are important in forensics and contribute to the population genetics and genetic background of the contemporary Croatian population.