Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Langmuir ; 40(13): 6773-6785, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507244

RESUMEN

This study investigates the impact of atomic defects, such as oxygen vacancies and Ce3+ ions, on cerium oxide (ceria) surfaces during chemical mechanical polishing (CMP) for silica glass finishing. Using density functional theory (DFT) and reactive molecular dynamics simulations, the interaction of orthosilicic molecules and silica glass with dry and wet ceria surfaces is explored. Defects alter the surface reactivity, leading to the dissociation of orthosilicic acid on oxygen vacancies, forming a strong Si-O-Ce bond. Hydroxylated surfaces exhibit easier oxygen vacancy formation and thermodynamically favored substitution of hydroxyl groups with orthosilicic acid. A new ReaxFF library for silica/ceria interfaces with defects is validated using DFT outcomes. Reactive MD simulations demonstrate that ceria surfaces with 30% Ce3+ ions on (111) planes exhibit higher polishing efficiency, attributed to increased Si-O-Ce bond formation. The simultaneous presence of oxygen vacancies and various acidic and basic sites on ceria surfaces enhances the polishing efficiency, involving acid-base reactions with silica. Defective surfaces show superior efficiency by removing silicate chains, contrasting with nondefective surfaces removing isolated orthosilicate units. This study provides insights into optimizing CMP processes for high-precision glass industry surface finishing.

2.
J Chem Phys ; 160(3)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38226825

RESUMEN

To elucidate the atomistic origin of volume relaxation in soda-lime silicate glass annealed below the glass transition temperature (Tg), the experimental and calculated Raman spectra were compared. By decomposing the calculated Raman spectra into specific groups of atoms, the Raman peaks at 800, 950, 1050, 1100, and 1150 cm-1 were attributed to oxygen and silicon in Si-O-Si, non-bridging oxygen in the Q2 unit, bridging oxygen in low-angle Si-O-Si, non-bridging oxygen in the Q4 unit, and bridging oxygen in high-angle Si-O-Si, respectively. Based on these attributions, we found that by decreasing the fictive temperature by annealing below Tg - 70 K, a homogenization reaction Q2 + Q4 → 2Q3 and an increase in average Si-O-Si angle occurred simultaneously. By molecular dynamics simulation, we clarified how the experimentally demonstrated increase in average Si-O-Si angle contributes to volume shrinkage; increasing Si-O-Si angles can expand the space inside the rings, and Na can be inserted into the ring center.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA