Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Elife ; 122023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153986

RESUMEN

We used non-invasive real-time genomic approaches to monitor one of the last surviving populations of the critically endangered kakapo (Strigops habroptilus). We first established an environmental DNA metabarcoding protocol to identify the distribution of kakapo and other vertebrate species in a highly localized manner using soil samples. Harnessing real-time nanopore sequencing and the high-quality kakapo reference genome, we then extracted species-specific DNA from soil. We combined long read-based haplotype phasing with known individual genomic variation in the kakapo population to identify the presence of individuals, and confirmed these genomically informed predictions through detailed metadata on kakapo distributions. This study shows that individual identification is feasible through nanopore sequencing of environmental DNA, with important implications for future efforts in the application of genomics to the conservation of rare species, potentially expanding the application of real-time environmental DNA research from monitoring species distribution to inferring fitness parameters such as genomic diversity and inbreeding.


Asunto(s)
ADN Ambiental , Loros , Humanos , Animales , Genómica , Suelo , Biodiversidad
2.
Nat Ecol Evol ; 7(10): 1693-1705, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640765

RESUMEN

The kakapo is a critically endangered, intensively managed, long-lived nocturnal parrot endemic to Aotearoa New Zealand. We generated and analysed whole-genome sequence data for nearly all individuals living in early 2018 (169 individuals) to generate a high-quality species-wide genetic variant callset. We leverage extensive long-term metadata to quantify genome-wide diversity of the species over time and present new approaches using probabilistic programming, combined with a phenotype dataset spanning five decades, to disentangle phenotypic variance into environmental and genetic effects while quantifying uncertainty in small populations. We find associations for growth, disease susceptibility, clutch size and egg fertility within genic regions previously shown to influence these traits in other species. Finally, we generate breeding values to predict phenotype and illustrate that active management over the past 45 years has maintained both genome-wide diversity and diversity in breeding values and, hence, evolutionary potential. We provide new pathways for informing future conservation management decisions for kakapo, including prioritizing individuals for translocation and monitoring individuals with poor growth or high disease risk. Overall, by explicitly addressing the challenge of the small sample size, we provide a template for the inclusion of genomic data that will be transformational for species recovery efforts around the globe.


Asunto(s)
Especies en Peligro de Extinción , Loros , Humanos , Animales , Genómica , Genoma , Nueva Zelanda
3.
Mol Syst Biol ; 19(8): e11686, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37325891

RESUMEN

The ongoing degradation of natural systems and other environmental changes has put our society at a crossroad with respect to our future relationship with our planet. While the concept of One Health describes how human health is inextricably linked with environmental health, many of these complex interdependencies are still not well-understood. Here, we describe how the advent of real-time genomic analyses can benefit One Health and how it can enable timely, in-depth ecosystem health assessments. We introduce nanopore sequencing as the only disruptive technology that currently allows for real-time genomic analyses and that is already being used worldwide to improve the accessibility and versatility of genomic sequencing. We showcase real-time genomic studies on zoonotic disease, food security, environmental microbiome, emerging pathogens, and their antimicrobial resistances, and on environmental health itself - from genomic resource creation for wildlife conservation to the monitoring of biodiversity, invasive species, and wildlife trafficking. We stress why equitable access to real-time genomics in the context of One Health will be paramount and discuss related practical, legal, and ethical limitations.


Asunto(s)
Ecosistema , Salud Única , Humanos , Genómica , Biodiversidad , Genoma
4.
PeerJ ; 11: e14675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755872

RESUMEN

Background: Animal conservation often requires intensive management actions to improve reproductive output, yet any adverse effects of these may not be immediately apparent, particularly in threatened species with small populations and long lifespans. Hand-rearing is an example of a conservation management strategy which, while boosting populations, can cause long-term demographic and behavioural problems. It is used in the recovery of the critically endangered kakapo (Strigops habroptilus), a flightless parrot endemic to New Zealand, to improve the slow population growth that is due to infrequent breeding, low fertility and low hatching success. Methods: We applied Bayesian mixed models to examine whether hand-rearing and other factors were associated with clutch fertility in kakapo. We used projection predictive variable selection to compare the relative contributions to fertility from the parents' rearing environment, their age and previous copulation experience, the parental kinship, and the number of mates and copulations for each clutch. We also explored how the incidence of repeated copulations and multiple mates varied with kakapo density. Results: The rearing status of the clutch father and the number of mates and copulations of the clutch mother were the dominant factors in predicting fertility. Clutches were less likely to be fertile if the father was hand-reared compared to wild-reared, but there was no similar effect for mothers. Clutches produced by females copulating with different males were more likely to be fertile than those from repeated copulations with one male, which in turn had a higher probability of fertility than those from a single copulation. The likelihood of multiple copulations and mates increased with female:male adult sex ratio, perhaps as a result of mate guarding by females. Parental kinship, copulation experience and age all had negligible associations with clutch fertility. Conclusions: These results provide a rare assessment of factors affecting fertility in a wild threatened bird species, with implications for conservation management. The increased fertility due to multiple mates and copulations, combined with the evidence for mate guarding and previous results of kakapo sperm morphology, suggests that an evolutionary mechanism exists to optimise fertility through sperm competition in kakapo. The high frequency of clutches produced from single copulations in the contemporary population may therefore represent an unnatural state, perhaps due to too few females. This suggests that opportunity for sperm competition should be maximised by increasing population densities, optimising sex ratios, and using artificial insemination. The lower fertility of hand-reared males may result from behavioural defects due to lack of exposure to conspecifics at critical development stages, as seen in other taxa. This potential negative impact of hand-rearing must be balanced against the short-term benefits it provides.


Asunto(s)
Loros , Semen , Animales , Masculino , Femenino , Teorema de Bayes , Fertilidad , Reproducción , Especies en Peligro de Extinción
6.
Mol Ecol Resour ; 23(4): 771-786, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36598115

RESUMEN

Aquatic environmental DNA (eDNA) surveys are transforming how marine ecosystems are monitored. The time-consuming preprocessing step of active filtration, however, remains a bottleneck. Hence, new approaches that eliminate the need for active filtration are required. Filter-feeding invertebrates have been proven to collect eDNA, but side-by-side comparative studies to investigate the similarity between aquatic and filter-feeder eDNA signals are essential. Here, we investigated the differences among four eDNA sources (water; bivalve gill-tissue; sponges; and ethanol in which filter-feeding organisms were stored) along a vertically stratified transect in Doubtful Sound, New Zealand using three metabarcoding primer sets targeting fish and vertebrates. Combined, eDNA sources detected 59 vertebrates, while concurrent diver surveys observed eight fish species. There were no significant differences in alpha and beta diversity between water and sponge eDNA and both sources were highly correlated. Vertebrate eDNA was successfully extracted from the ethanol in which sponges were stored, although a reduced number of species were detected. Bivalve gill-tissue dissections, on the other hand, failed to reliably detect eDNA. Overall, our results show that vertebrate eDNA signals obtained from water samples and marine sponges are highly concordant. The strong similarity in eDNA signals demonstrates the potential of marine sponges as an additional tool for eDNA-based marine biodiversity surveys, by enabling the incorporation of larger sample numbers in eDNA surveys, reducing plastic waste, simplifying sample collection, and as a cost-efficient alternative. However, we note the importance to not detrimentally impact marine communities by, for example, nonlethal subsampling, specimen cloning, or using bycatch specimens.


Asunto(s)
ADN Ambiental , Poríferos , Animales , ADN Ambiental/genética , Ecosistema , Código de Barras del ADN Taxonómico/métodos , Monitoreo del Ambiente/métodos , Biodiversidad , Vertebrados/genética , Peces/genética , Agua
7.
Elife ; 112022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36476569

RESUMEN

The eLife Early-Career Advisory Group discusses eLife's new peer review and publishing model, and how the whole process of scientific communication could be improved for the benefit of early-career researchers and the entire scientific community.


Asunto(s)
Revisión por Pares , Comunicación
8.
Mol Ecol Resour ; 22(7): 2599-2613, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35593534

RESUMEN

Reduced representation sequencing (RRS) is a widely used method to assay the diversity of genetic loci across the genome of an organism. The dominant class of RRS approaches assay loci associated with restriction sites within the genome (restriction site associated DNA sequencing, or RADseq). RADseq is frequently applied to non-model organisms since it enables population genetic studies without relying on well-characterized reference genomes. However, RADseq requires the use of many bioinformatic filters to ensure the quality of genotyping calls. These filters can have direct impacts on population genetic inference, and therefore require careful consideration. One widely used filtering approach is the removal of loci that do not conform to expectations of Hardy-Weinberg equilibrium (HWE). Despite being widely used, we show that this filtering approach is rarely described in sufficient detail to enable replication. Furthermore, through analyses of in silico and empirical data sets we show that some of the most widely used HWE filtering approaches dramatically impact inference of population structure. In particular, the removal of loci exhibiting departures from HWE after pooling across samples significantly reduces the degree of inferred population structure within a data set (despite this approach being widely used). Based on these results, we provide recommendations for best practice regarding the implementation of HWE filtering for RADseq data sets.


Asunto(s)
Biología Computacional , Genética de Población , Biología Computacional/métodos , Genoma , Análisis de Secuencia de ADN/métodos
9.
Nat Biotechnol ; 40(9): 1332-1335, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35332338

RESUMEN

Routine haplotype-resolved genome assembly from single samples remains an unresolved problem. Here we describe an algorithm that combines PacBio HiFi reads and Hi-C chromatin interaction data to produce a haplotype-resolved assembly without the sequencing of parents. Applied to human and other vertebrate samples, our algorithm consistently outperforms existing single-sample assembly pipelines and generates assemblies of similar quality to the best pedigree-based assemblies.


Asunto(s)
Diploidia , Genoma , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Padres , Análisis de Secuencia de ADN
10.
Sex Dev ; 15(1-3): 122-133, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34167118

RESUMEN

Sex determination and differentiation varies widely across vertebrates, but is most dramatically diverse in fishes. Among fishes sex reversal and sex change are observed in 41 teleost families spanning 7 orders. These sex-changing fish perhaps highlight better than any other system that sex determination is not the narrow and fixed construct we once thought, but a plastic trait that is better viewed as a reaction norm. However, while this stunning transformation is increasingly understood, a fundamental question arises, which is why some fish species have retained this inherent plasticity in sexual fate, while others have not? Here, we explore our current understanding of sex change in fish, some of the factors that permit and constrain sex reversal, and posit that gene duplication and neofunctionalization contribute to the sexual lability observed in fish.


Asunto(s)
Peces , Duplicación de Gen , Animales , Peces/genética , Fenotipo , Análisis para Determinación del Sexo , Vertebrados
11.
Reprod Biomed Online ; 42(6): 1097-1107, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33849786

RESUMEN

RESEARCH QUESTION: Full-length 16S rRNA gene sequencing using nanopore technology is a fast alternative to conventional short-read 16S rRNA gene sequencing with low initial investment costs that has been used for various microbiome studies but has not yet been investigated as an alternative approach for endometrial microbiome analysis. Is in-situ 16S rRNA gene long-read sequencing using portable nanopore sequencing technology feasible and reliable for endometrial microbiome analysis? DESIGN: A prospective experimental study based on 33 patients seeking infertility treatment between January and October 2019. A 16S rRNA gene long-read nanopore sequencing protocol for analysing endometrial microbiome samples was established, including negative controls for contamination evaluation and positive controls for bias evaluation. Contamination caused by kit and exterior sources was identified and excluded from the analysis. Endometrial samples from 33 infertile patients were sequenced using the optimized long-read nanopore sequencing protocol and compared with conventional short-read sequencing carried out by external laboratories. RESULTS: Of the 33 endometrial patient samples, 23 successfully amplified (69.7%) and their microbiome was assessed using nanopore sequencing. Of those 23 samples, 14 (60.9%) were Lactobacillus-dominated (>80% of reads mapping to Lactobacillus), with 10 samples resulting in more than 90% Lactobacillus reads. Our long-read nanopore sequencing revealed results similar to two conventional short-read sequencing approaches and to long-read sequencing validation carried out in external laboratories. CONCLUSION: In this pilot study, 16S rRNA gene long-read nanopore sequencing was established to analyse the endometrial microbiome in situ that could be widely applied owing to its cost efficiency and portable character.


Asunto(s)
Endometrio/microbiología , Microbiota , Secuenciación de Nanoporos , ARN Ribosómico 16S/genética , Estudios de Factibilidad , Femenino , Humanos , Infertilidad Femenina/microbiología , Estudios Prospectivos
12.
Elife ; 102021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33461660

RESUMEN

While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, in situ metagenomic water surveys face substantial challenges in cost and logistics. Here, we present a simple, fast, cost-effective and remotely accessible freshwater diagnostics workflow centred around the portable nanopore sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore metagenomics can depict the hydrological core microbiome and fine temporal gradients in line with complementary physicochemical measurements. In a public health context, these data feature relevant sewage signals and pathogen maps at species level resolution. We anticipate that this framework will gather momentum for new environmental monitoring initiatives using portable devices.


Many water-dwelling bacteria can cause severe diseases such as cholera, typhoid or leptospirosis. One way to prevent outbreaks is to test water sources to find out which species of microbes they contain, and at which levels. Traditionally, this involves taking a water sample, followed by growing a few species of 'indicator bacteria' that help to estimate whether the water is safe. An alternative technique, called metagenomics, has been available since the mid-2000s. It consists in reviewing (or 'sequencing') the genetic information of most of the bacteria present in the water, which allows scientists to spot harmful species. Both methods, however, require well-equipped laboratories with highly trained staff, making them challenging to use in remote areas. The MinION is a pocket-sized device that ­ when paired with a laptop or mobile phone ­ can sequence genetic information 'on the go'. It has already been harnessed during Ebola, Zika or SARS-CoV-2 epidemics to track the genetic information of viruses in patients and environmental samples. However, it is still difficult to use the MinION and other sequencers to monitor bacteria in water sources, partly because the genetic information of the microbes is highly fragmented during DNA extraction. To address this challenge, Urban, Holzer et al. set out to optimise hardware and software protocols so the MinION could be used to detect bacterial species present in rivers. The tests focussed on the River Cam in Cambridge, UK, a waterway which faces regular public health problems: local rowers and swimmers often contract waterborne infections, sometimes leading to river closures. For six months, Urban, Holzer et al. used the MinION to map out the bacteria present across nine river sites, assessing the diversity of species and the presence of disease-causing microbes in the water. In particular, the results showed that optimising the protocols made it possible to tell the difference between closely related species ­ an important feature since harmful and inoffensive bacteria can sometimes be genetically close. The data also revealed that the levels of harmful bacteria were highest downstream of urban river sections, near a water treatment plant and river barge moorings. Together, these findings demonstrate that optimising MinION protocols can turn this device into a useful tool to easily monitor water quality. Around the world, climate change, rising urbanisation and the intensification of agriculture all threaten water quality. In fact, access to clean water is one of the United Nations sustainable development goals for 2030. Using the guidelines developed by Urban, Holzer et al., communities could harness the MinION to monitor water quality in remote areas, offering a cost-effective, portable DNA analysis tool to protect populations against deadly diseases.


Asunto(s)
Agua Dulce/microbiología , Metagenoma/genética , Metagenómica/métodos , Microbiota/genética , Secuenciación de Nanoporos/métodos , Microbiología del Agua , Bacterias/clasificación , Bacterias/genética , Secuencia de Bases , Análisis por Conglomerados , Biología Computacional/métodos , Monitoreo del Ambiente/métodos , Geografía , ARN Ribosómico 16S/genética , Ríos/microbiología , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Reino Unido
13.
Commun Biol ; 4(1): 116, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514857

RESUMEN

Animal mitochondrial genomic polymorphism occurs as low-level mitochondrial heteroplasmy and deeply divergent co-existing molecules. The latter is rare, known only in bivalvian mollusks. Here we show two deeply divergent co-existing mt-genomes in a vertebrate through genomic sequencing of the Tuatara (Sphenodon punctatus), the sole-representative of an ancient reptilian Order. The two molecules, revealed using a combination of short-read and long-read sequencing technologies, differ by 10.4% nucleotide divergence. A single long-read covers an entire mt-molecule for both strands. Phylogenetic analyses suggest a 7-8 million-year divergence between genomes. Contrary to earlier reports, all 37 genes typical of animal mitochondria, with drastic gene rearrangements, are confirmed for both mt-genomes. Also unique to vertebrates, concerted evolution drives three near-identical putative Control Region non-coding blocks. Evidence of positive selection at sites linked to metabolically important transmembrane regions of encoded proteins suggests these two mt-genomes may confer an adaptive advantage for an unusually cold-tolerant reptile.


Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Genoma Mitocondrial , Reptiles/genética , Aclimatación/genética , Animales , Frío , Femenino , Masculino , Filogenia
14.
BMC Res Notes ; 13(1): 92, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32093752

RESUMEN

OBJECTIVE: The biological interpretation of gene expression measurements is a challenging task. While ordination methods are routinely used to identify clusters of samples or co-expressed genes, these methods do not take sample or gene annotations into account. We aim to provide a tool that allows users of all backgrounds to assess and visualize the intrinsic correlation structure of complex annotated gene expression data and discover the covariates that jointly affect expression patterns. RESULTS: The Bioconductor package covRNA provides a convenient and fast interface for testing and visualizing complex relationships between sample and gene covariates mediated by gene expression data in an entirely unsupervised setting. The relationships between sample and gene covariates are tested by statistical permutation tests and visualized by ordination. The methods are inspired by the fourthcorner and RLQ analyses used in ecological research for the analysis of species abundance data, that we modified to make them suitable for the distributional characteristics of both, RNA-Seq read counts and microarray intensities, and to provide a high-performance parallelized implementation for the analysis of large-scale gene expression data on multi-core computational systems. CovRNA provides additional modules for unsupervised gene filtering and plotting functions to ensure a smooth and coherent analysis workflow.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Humanos , Análisis Multivariante , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Reproducibilidad de los Resultados
15.
Nature ; 578(7793): 129-136, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025019

RESUMEN

Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , ARN/genética , Variaciones en el Número de Copia de ADN , ADN de Neoplasias , Genoma Humano , Genómica , Humanos , Transcriptoma
17.
Genome Biol ; 20(1): 30, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30744673

RESUMEN

BACKGROUND: Alternative splicing is a key regulatory mechanism in eukaryotic cells and increases the effective number of functionally distinct gene products. Using bulk RNA sequencing, splicing variation has been studied across human tissues and in genetically diverse populations. This has identified disease-relevant splicing events, as well as associations between splicing and genomic features, including sequence composition and conservation. However, variability in splicing between single cells from the same tissue or cell type and its determinants remains poorly understood. RESULTS: We applied parallel DNA methylation and transcriptome sequencing to differentiating human induced pluripotent stem cells to characterize splicing variation (exon skipping) and its determinants. Our results show that variation in single-cell splicing can be accurately predicted based on local sequence composition and genomic features. We observe moderate but consistent contributions from local DNA methylation profiles to splicing variation across cells. A combined model that is built based on genomic features as well as DNA methylation information accurately predicts different splicing modes of individual cassette exons. These categories include the conventional inclusion and exclusion patterns, but also more subtle modes of cell-to-cell variation in splicing. Finally, we identified and characterized associations between DNA methylation and splicing changes during cell differentiation. CONCLUSIONS: Our study yields new insights into alternative splicing at the single-cell level and reveals a previously underappreciated link between DNA methylation variation and splicing.


Asunto(s)
Empalme Alternativo , Metilación de ADN , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA