Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sci Rep ; 14(1): 10696, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730068

RESUMEN

COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.


Asunto(s)
Antiinflamatorios , Antioxidantes , Antivirales , Tratamiento Farmacológico de COVID-19 , Curcumina , SARS-CoV-2 , Humanos , Curcumina/farmacología , Curcumina/análogos & derivados , Antioxidantes/farmacología , Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Antiinflamatorios/farmacología , Línea Celular Tumoral , Curcuma/química , Serina Endopeptidasas/metabolismo , COVID-19/virología , COVID-19/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/farmacología , Citocinas/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/virología
2.
Cells ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534318

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Receptores Nicotínicos , Humanos , Enfermedad de Parkinson/metabolismo , Receptores Nicotínicos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Nicotina/metabolismo , Dopamina/metabolismo , Astrocitos/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982672

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disease characterized by mutations in the huntingtin gene (mHtt), causing an unstable repeat of the CAG trinucleotide, leading to abnormal long repeats of polyglutamine (poly-Q) in the N-terminal region of the huntingtin, which form abnormal conformations and aggregates. Alterations in Ca2+ signaling are involved in HD models and the accumulation of mutated huntingtin interferes with Ca2+ homeostasis. Lysosomes are intracellular Ca2+ storages that participate in endocytic and lysosomal degradation processes, including autophagy. Nicotinic acid adenine dinucleotide phosphate (NAADP) is an intracellular second messenger that promotes Ca2+ release from the endo-lysosomal system via Two-Pore Channels (TPCs) activation. Herein, we show the impact of lysosomal Ca2+ signals on mHtt aggregation and autophagy blockade in murine astrocytes overexpressing mHtt-Q74. We observed that mHtt-Q74 overexpression causes an increase in NAADP-evoked Ca2+ signals and mHtt aggregation, which was inhibited in the presence of Ned-19, a TPC antagonist, or BAPTA-AM, a Ca2+ chelator. Additionally, TPC2 silencing revert the mHtt aggregation. Furthermore, mHtt has been shown co-localized with TPC2 which may contribute to its effects on lysosomal homeostasis. Moreover, NAADP-mediated autophagy was also blocked since its function is dependent on lysosomal functionality. Taken together, our data show that increased levels of cytosolic Ca2+ mediated by NAADP causes mHtt aggregation. Additionally, mHtt co-localizes with the lysosomes, where it possibly affects organelle functions and impairs autophagy.


Asunto(s)
Canales de Calcio , Enfermedades Neurodegenerativas , Ratones , Animales , Canales de Calcio/metabolismo , Astrocitos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , NADP/metabolismo , Lisosomas/metabolismo , Autofagia , Calcio/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
4.
Neuroendocrinology ; 113(1): 14-35, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35760047

RESUMEN

Neuroactive steroids can be synthetic or endogenous molecules produced by neuronal and glial cells and peripheral glands. Examples include estrogens, testosterone, progesterone and its reduced metabolites such as 5α-dihydro-progesterone and allopregnanolone. Steroids produced by neurons and glia target the nervous system and are called neurosteroids. Progesterone and analog molecules, known as progestogens, have been shown to exhibit neurotrophic, neuroprotective, antioxidant, anti-inflammatory, glial modulatory, promyelinating, and remyelinating effects in several experimental models of neurodegenerative and injury conditions. Pleiotropic mechanisms of progestogens may act synergistically to prevent neuron degeneration, astrocyte and microglial reactivity, reducing morbidity and mortality. The aim of this review is to summarize the significant findings related to the actions of progesterone and other progestogens in experimental models and epidemiological and clinical trials of some of the most prevalent and debilitating chronic neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. We evaluated progestogen alterations under pathological conditions, how pathology modifies their levels, as well as the intracellular mechanisms and glial interactions underlying their neuroprotective effects. Furthermore, an analysis of the potential of natural progestogens and synthetic progestins as neuroprotective and regenerative agents, when administered as hormone replacement therapy in menopause, is also discussed.


Asunto(s)
Enfermedad de Alzheimer , Progestinas , Femenino , Humanos , Progestinas/farmacología , Progestinas/uso terapéutico , Progestinas/metabolismo , Progesterona/farmacología , Progesterona/uso terapéutico , Progesterona/metabolismo , Neuroprotección , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo
5.
Life Sci ; 308: 120930, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36075471

RESUMEN

AIMS: This study evaluated SARS-CoV-2 replication in human cell lines derived from various tissues and investigated molecular mechanisms related to viral infection susceptibility and replication. MAIN METHODS: SARS-CoV-2 replication in BEAS-2B and A549 (respiratory tract), HEK-293 T (kidney), HuH7 (liver), SH-SY5Y (brain), MCF7 (breast), Huvec (endothelial) and Caco-2 (intestine) was evaluated by RT-qPCR. Concomitantly, expression levels of ACE2 (Angiotensin Converting Enzyme) and TMPRSS2 were assessed through RT-qPCR and western blot. Proteins related to autophagy and mitochondrial metabolism were monitored in uninfected cells to characterize the cellular metabolism of each cell line. The effect of ACE2 overexpression on viral replication in pulmonary cells was also investigated. KEY FINDINGS: Our data show that HuH7, Caco-2 and MCF7 presented a higher viral load compared to the other cell lines. The increased susceptibility to SARS-CoV-2 infection seems to be associated not only with the differential levels of proteins intrinsically related to energetic metabolism, such as ATP synthase, citrate synthase, COX and NDUFS2 but also with the considerably higher TMPRSS2 mRNA expression. The two least susceptible cell types, BEAS-2B and A549, showed drastically increased SARS-CoV-2 replication capacity when ACE2 was overexpressed. These modified cell lines are relevant for studying SARS-CoV-2 replication in vitro. SIGNIFICANCE: Our data not only reinforce that TMPRSS2 expression and cellular energy metabolism are important molecular mechanisms for SARS-CoV-2 infection and replication, but also indicate that HuH7, MCF7 and Caco-2 are suitable models for mechanistic studies of COVID-19. Moreover, pulmonary cells overexpressing ACE2 can be used to understand mechanisms associated with SARS-CoV-2 replication.


Asunto(s)
COVID-19 , Neuroblastoma , Adenosina Trifosfato , Enzima Convertidora de Angiotensina 2/genética , Autofagia , Células CACO-2 , Citrato (si)-Sintasa , Células HEK293 , Humanos , Peptidil-Dipeptidasa A/metabolismo , ARN Mensajero/genética , SARS-CoV-2
6.
Mol Cell Endocrinol ; 558: 111775, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36096380

RESUMEN

Gender-bias in COVID-19 severity has been suggested by clinical data. Experimental data in cell and animal models have demonstrated the role of sex hormones, particularly estrogens, in viral infections such as in COVID-19. SARS-CoV-2 uses ACE2 as a receptor to recognize host cells, and the protease TMPRSS2 for priming the Spike protein, facilitating virus entry into cells. However, the involvement of estrogenic receptors in SARS-CoV-2 infection are still being explored. Thus, in order to investigate the role of estrogen and its receptors in COVID-19, the estrogen receptors ERα, ERß and GPER1 were overexpressed in bronchial BEAS-2B cell, and then infected with SARS-CoV-2. Interestingly, the levels of ACE2 and TMPRSS2 mRNA were higher in SARS-CoV-2-infected cells, but no difference was observed in cells with estrogen receptors overexpression. GPER1 can be involved in virus infection or replication, since its higher levels reduces SARS-CoV-2 load. On the other hand, pharmacological antagonism of GPER1 enhanced viral load. Those data suggest that GPER1 has an important role in SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Animales , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Receptores de Estrógenos , Receptor beta de Estrógeno , Receptor alfa de Estrógeno , Peptidil-Dipeptidasa A/metabolismo , ARN Mensajero/genética , Estrógenos
7.
Brain Res ; 1795: 148079, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36088959

RESUMEN

Alzheimer's disease (AD) is the most prevalent aging-associated neurodegenerative disease, with a higher incidence in women than men. There is evidence that sex hormone replacement therapy, particularly estrogen, reduces memory loss in menopausal women. Neurofibrillary tangles are associated with tau protein aggregation, a characteristic of AD and other tauopathies. In this sense, autophagy is a promising cellular process to remove these protein aggregates. This study evaluated the autophagy mechanisms involved in neuroprotection induced by 17ß-estradiol (E2) in a Tet-On inducible expression tauopathy cell model (EGFP-tau WT or with the P301L mutation, 0N4R isoform). The results indicated that 17ß-estradiol induces autophagy by activating AMPK in a concentration-dependent manner, independent of mTOR signals. The estrogen receptor α (ERα) agonist, PPT, also induced autophagy, while the ERα antagonist, MPP, substantially attenuated the 17ß-estradiol-mediated autophagy induction. Notably, 17ß-estradiol increased LC3-II levels and phosphorylated and total tau protein clearance in the EGFP-tau WT cell line but not in EGPF-tau P301L. Similar results were observed with E2-BSA, a plasma membrane-impermeable estrogen, suggesting membrane ERα involvement in non-genomic estrogenic pathway activation. Furthermore, 17ß-estradiol-induced autophagy led to EGFP-tau protein clearance. These results demonstrate that modulating autophagy via the estrogenic pathway may represent a new therapeutic target for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Tauopatías , Proteínas Quinasas Activadas por AMP , Autofagia , Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Femenino , Humanos , Masculino , Agregado de Proteínas , Receptores de Estrógenos , Serina-Treonina Quinasas TOR , Proteínas tau/metabolismo
8.
J Neurosci Res ; 99(11): 2932-2947, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510532

RESUMEN

Mitochondria-associated ER membranes (MAMs) are formed by close and specific components in the contact sites between the endoplasmic reticulum (ER) and mitochondria, which participate in several cell functions, including lipid metabolism, autophagy, and Ca2+ signaling. Particularly, the presence of α-synuclein (α-syn) in MAMs was previously demonstrated, indicating a physical interaction among some proteins in this region and a potential involvement in cell dysfunctions. MAMs alterations are associated with neurodegenerative diseases such as Parkinson's disease (PD) and contribute to the pathogenesis features. Here, we investigated the effects of α-syn on MAMs and Ca2+ transfer from the ER to mitochondria in WT- and A30P α-syn-overexpressing SH-SY5Y or HEK293 cells. We observed that α-syn potentiates the mitochondrial membrane potential (Δψm ) loss induced by rotenone, increases mitophagy and mitochondrial Ca2+ overload. Additionally, in α-syn-overexpressing cells, we found a reduction in ER-mitochondria contact sites through the impairment of the GRP75-IP3R interaction, however, with no alteration in VDAC1-GRP75 interaction. Consequently, after Ca2+ release from the ER, α-syn-overexpressing cells demonstrated a reduction in Ca2+ buffering by mitochondria, suggesting a deregulation in MAM activity. Taken together, our data highlight the importance of the α-syn/MAMs/Ca2+ axis that potentially affects cell functions in PD.


Asunto(s)
Calcio , alfa-Sinucleína , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Proteínas HSP70 de Choque Térmico , Humanos , Proteínas de la Membrana , Mitocondrias/metabolismo , alfa-Sinucleína/metabolismo
9.
Pharmaceutics ; 13(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494241

RESUMEN

The pharmacological modulation of autophagy is considered a promising neuroprotective strategy. While it has been postulated that lithium regulates this cellular process, the age-related effects have not been fully elucidated. Here, we evaluated lithium-mediated neuroprotective effects in young and aged striatum. After determining the optimal experimental conditions for inducing autophagy in loco with lithium carbonate (Li2CO3), we measured cell viability, reactive oxygen species (ROS) generation and oxygen consumption with rat brain striatal slices from young and aged animals. In the young striatum, Li2CO3 increased tissue viability and decreased ROS generation. These positive effects were accompanied by enhanced levels of LC3-II, LAMP 1, Ambra 1 and Beclin-1 expression. In the aged striatum, Li2CO3 reduced the autophagic flux and increased the basal oxygen consumption rate. Ultrastructural changes in the striatum of aged rats that consumed Li2CO3 for 30 days included electrondense mitochondria with disarranged cristae and reduced normal mitochondria and lysosomes area. Our data show that the striatum from younger animals benefits from lithium-mediated neuroprotection, while the striatum of older rats does not. These findings should be considered when developing neuroprotective strategies involving the induction of autophagy in aging.

10.
Physiol Rep ; 9(2): e14707, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33463909

RESUMEN

The COVID-19 has originated from Wuhan, China, in December 2019 and has been affecting the public health system, society, and economy in an unheard-of manner. There is no specific treatment or vaccine available for COVID-19. Previous data showed that men are more affected than women by COVID-19, then we hypothesized whether sex hormones could be protecting the female organism against the infection. VERO E6 cells have been commonly used as in vitro model for SARS-CoV-2 infection. In our experimental approach, we have treated VERO E6 cells with 17ß-estradiol to evaluate the modulation of SARS-CoV-2 infection in this cell line. Here we demonstrated that estrogen protein receptors ERα, ERß, and GPER1 are expressed by VERO E6 cells and could be used to study the effects of this steroid hormone. Previous and 24-hours post-infection, cells treated with 17ß-estradiol revealed a reduction in the viral load. Afterward, we found that SARS-CoV-2 infection per se results in ACE2 and TMPRSS2 increased gene expression in VERO E6-cell, which could be generating a cycle of virus infection in host cells. The estrogen treatment reduces the levels of the TMPRSS2, which are involved with SARS-CoV-2 infectiveness capacity, and hence, reducing the pathogenicity/genesis. These data suggest that estrogen could be a potential therapeutic target promoting cell protection against SARS-CoV-2. This opens new possibilities for further studies on 17ß-estradiol in human cell lines infected by SARS-CoV-2 and at least in part, explain why men developed a more severe COVID-19 compared to women.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Estradiol/farmacología , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/metabolismo , COVID-19/virología , Chlorocebus aethiops , Interacciones Huésped-Patógeno , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Células Vero
11.
FASEB J ; 34(11): 14103-14119, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32965736

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has provoked major stresses on the health-care systems of several countries, and caused the death of more than a quarter of a million people globally, mainly in the elderly population with preexisting pathologies. Previous studies with coronavirus (SARS-CoV) point to gender differences in infection and disease progression with increased susceptibility in male patients, indicating that estrogens may be associated with physiological protection against the coronavirus. Therefore, the objectives of this work are threefold. First, we aim to summarize the SARS-CoV-2 infection pathway and the roles both the virus and patient play in COVID-19 (Coronavirus disease 2019) progression, clinical symptomatology, and mortality. Second, we detail the effect estrogen has on viral infection and host infection response, including its role in both the regulation of key viral receptor expression and the mediation of inflammatory activity. Finally, we describe how ERs (estrogen receptors) and RAGE (receptor for advanced glycation end-products) play a critical role in metabolic pathways, which we envisage could maintain a close interplay with SARS-CoV and COVID-19 mortality rates, despite a current lack of research directly determining how. Taken together, we present the current state of the field regarding SARS-CoV-2 research and illuminate where research is needed to better define the role both estrogen and metabolic comorbidities have in the COVID-19 disease state, which can be key in screening potential therapeutic options as the search for effective treatments continue.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/patología , Neumonía Viral/epidemiología , Neumonía Viral/patología , Factores de Edad , Enzima Convertidora de Angiotensina 2 , Animales , Antígenos de Neoplasias/metabolismo , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Susceptibilidad a Enfermedades , Estrógenos/metabolismo , Femenino , Humanos , Pulmón/patología , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/inmunología , Neumonía Viral/metabolismo , Receptores de Estrógenos/metabolismo , SARS-CoV-2 , Factores Sexuales , Transducción de Señal
12.
Clinics (Sao Paulo) ; 75: e1980, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32490931

RESUMEN

Considering that female sexual hormones may modulate the inflammatory response and also exhibit direct effects on the cells of the immune system, herein, we intend to discuss the sex differences and the role of estradiol in modulating the lung and systemic inflammatory response, focusing on its possible application as a treatment modality for SARS-CoV-2 patients. COVID-19 patients develop severe hypoxemia early in the course of the disease, which is silent most of the time. Small fibrinous thrombi in pulmonary arterioles and a tumefaction of endothelial were observed in the autopsies of fatal COVID-19 cases. Studies showed that the viral infection induces a vascular process in the lung, which included vasodilation and endothelial dysfunction. Further, the proportions of CD4+ T and CD8+ T lymphocytes were strongly reduced in patients with severe SARS-CoV-2 infection. Estradiol is connected with CD4+ T cell numbers and increases T-reg cell populations, affecting immune responses to infection. It is known that estradiol exerts a protective effect on endothelial function, activating the generation of nitric oxide (NO) via endothelial nitric oxide synthase. Estrogen attenuates the vasoconstrictor response to various stimuli and induces vasodilation in the pulmonary vasculature during stress situations like hypoxia. It exerts a variety of rapid actions, which are initiated after its coupling with membrane receptors, which in turn, may positively modulate vascular responses in pulmonary disease and help to maintain microvascular flow. Direct and indirect mechanisms underlying the effects of estradiol were investigated, and the results point to a possible protective effect of estradiol against COVID-19, indicating that it may be considered as an adjuvant therapeutic element for the treatment of patients affected by the novel coronavirus.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/terapia , Estradiol/uso terapéutico , Inmunidad Innata , Inflamación/virología , Neumonía Viral/terapia , Animales , COVID-19 , Femenino , Humanos , Inflamación/tratamiento farmacológico , Masculino , Pandemias , Ratas , SARS-CoV-2 , Factores Sexuales
13.
Int Immunopharmacol ; 84: 106495, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32298965

RESUMEN

Autophagy is an important mechanism for tumor escape, allowing tumor cells to recover from the damage induced by chemotherapy, radiation therapy, and immunotherapy and contributing to the development of resistance. The pharmacological inhibition of autophagy contributes to increase the efficacy of antineoplastic agents. Exposing tumor cells to low concentrations of select autophagy-inducing antineoplastic agents increases their immunogenicity and enhances their ability to stimulate dendritic cell (DC) maturation. We tested whether the application of an autophagy-inhibiting agent, chloroquine (CQ), in combination with low concentrations of 5-fluorouracil (5-FU) increases the ability of tumor cells to induce DC maturation. DCs sensitized with the lysate of HCT-116 cells previously exposed to such a combination enhanced the DC maturation/activation ability. These matured DCs also increased the allogeneic responsiveness of both CD4+ and CD8+ T cells, which showed a greater proliferative response than those from DCs sensitized with control lysates. The T cells expanded in such cocultures were CD69+ and PD-1- and produced higher levels of IFN-γ and lower levels of IL-10, consistent with the preferential activation of Th1 cells. Cocultures of autologous DCs and lymphocytes improved the generation of cytotoxic T lymphocytes, as assessed by the expression of CD107a, perforin, and granzyme B. The drug combination increased the expression of genes related to the CEACAM family (BECN1, ATGs, MAPLC3B, ULK1, SQSTM1) and tumor suppressors (PCBP1). Furthermore, the decreased expression of genes related to metastasis and tumor progression (BNIP3, BNIP3L, FOSL2, HES1, LAMB3, LOXL2, NDRG1, P4HA1, PIK3R2) was noted. The combination of 5-FU and CQ increases the ability of tumor cells to drive DC maturation and enhances the ability of DCs to stimulate T cell responses.


Asunto(s)
Autofagia/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Cloroquina/farmacología , Células Dendríticas/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Células Dendríticas/citología , Células Dendríticas/inmunología , Fluorouracilo/farmacología , Células HCT116 , Humanos , Activación de Linfocitos/efectos de los fármacos , Células TH1/efectos de los fármacos , Células TH1/metabolismo , Activación Transcripcional/efectos de los fármacos
14.
Einstein (Sao Paulo) ; 18: eAO4560, 2020.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-32321078

RESUMEN

OBJECTIVE: To investigate if ICI 182,780 (fulvestrant), a selective estrogen receptor alpha/beta (ERα/ERß) antagonist, and G-1, a selective G-protein-coupled receptor (GPER) agonist, can potentially induce autophagy in breast cancer cell lines MCF-7 and SKBr3, and how G-1 affects cell viability. METHODS: Cell viability in MCF-7 and SKBr3 cells was assessed by the MTT assay. To investigate the autophagy flux, MCF-7 cells were transfected with GFP-LC3, a marker of autophagosomes, and analyzed by real-time fluorescence microscopy. MCF-7 and SKBr3 cells were incubated with acridine orange for staining of acidic vesicular organelles and analyzed by flow cytometry as an indicator of autophagy. RESULTS: Regarding cell viability in MCF-7 cells, ICI 182,780 and rapamycin, after 48 hours, led to decreased cell proliferation whereas G-1 did not change viability over the same period. The data showed that neither ICI 182,780 nor G-1 led to increased GFP-LC3 puncta in MCF-7 cells over the 4-hour observation period. The cytometry assay showed that ICI 182,780 led to a higher number of acidic vesicular organelles in MCF-7 cells. G-1, in turn, did not have this effect in any of the cell lines. In contrast, ICI 182,780 and G-1 did not decrease cell viability of SKBr3 cells or induce formation of acidic vesicular organelles, which corresponds to the final step of the autophagy process in this cell line. CONCLUSION: The effect of ICI 182,780 on increasing acidic vesicular organelles in estrogen receptor-positive breast cancer cells appears to be associated with its inhibitory effect on estrogen receptors, and GPER does notseem to be involved. Understanding these mechanisms may guide further investigations of these receptors' involvement in cellular processes of breast cancer resistance.


Asunto(s)
Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Antagonistas del Receptor de Estrógeno/farmacología , Fulvestrant/farmacología , Receptores Acoplados a Proteínas G/agonistas , Análisis de Varianza , Western Blotting , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/antagonistas & inhibidores , Femenino , Citometría de Flujo/métodos , Humanos , Células MCF-7 , Receptores Acoplados a Proteínas G/análisis , Reproducibilidad de los Resultados , Sirolimus/farmacología , Factores de Tiempo , Transfección/métodos
15.
Einstein (Säo Paulo) ; 18: eAO4560, 2020. graf
Artículo en Inglés | LILACS | ID: biblio-1101099

RESUMEN

ABSTRACT Objective To investigate if ICI 182,780 (fulvestrant), a selective estrogen receptor alpha/beta (ERα/ERβ) antagonist, and G-1, a selective G-protein-coupled receptor (GPER) agonist, can potentially induce autophagy in breast cancer cell lines MCF-7 and SKBr3, and how G-1 affects cell viability. Methods Cell viability in MCF-7 and SKBr3 cells was assessed by the MTT assay. To investigate the autophagy flux, MCF-7 cells were transfected with GFP-LC3, a marker of autophagosomes, and analyzed by real-time fluorescence microscopy. MCF-7 and SKBr3 cells were incubated with acridine orange for staining of acidic vesicular organelles and analyzed by flow cytometry as an indicator of autophagy. Results Regarding cell viability in MCF-7 cells, ICI 182,780 and rapamycin, after 48 hours, led to decreased cell proliferation whereas G-1 did not change viability over the same period. The data showed that neither ICI 182,780 nor G-1 led to increased GFP-LC3 puncta in MCF-7 cells over the 4-hour observation period. The cytometry assay showed that ICI 182,780 led to a higher number of acidic vesicular organelles in MCF-7 cells. G-1, in turn, did not have this effect in any of the cell lines. In contrast, ICI 182,780 and G-1 did not decrease cell viability of SKBr3 cells or induce formation of acidic vesicular organelles, which corresponds to the final step of the autophagy process in this cell line. Conclusion The effect of ICI 182,780 on increasing acidic vesicular organelles in estrogen receptor-positive breast cancer cells appears to be associated with its inhibitory effect on estrogen receptors, and GPER does notseem to be involved. Understanding these mechanisms may guide further investigations of these receptors' involvement in cellular processes of breast cancer resistance.


RESUMO Objetivo Avaliar o efeito dos compostos ICI 182,780 (fulvestranto), um antagonista seletivo dos receptores de estrógeno alfa/beta (REα/REβ), e do G-1, um agonista seletivo de receptores de estrógeno acoplados a proteínas-G (GPER), na possível indução de autofagia em linhagens de câncer de mama MCF-7 e SKBr3, bem como o efeito de G-1 na viabilidade celular. Métodos A viabilidade celular de células MCF-7 e SKBr3 foi avaliada pelo ensaio com MTT. Para investigar a indução da autofagia, células MCF-7 foram transfectadas com GFP-LC3, um marcador de autofagossomos, e analisadas por microscopia de fluorescência em tempo real. As células MCF-7 e SKBr3 foram incubadas com o indicador de compartimentos ácidos laranja de acridina e analisadas por citometria de fluxo como indicativo para autofagia. Resultados Em células MCF-7, o ICI 182,780 e rapamicina após 48 horas levaram à diminuição da viabilidade celular, enquanto o G-1 não alterou a viabilidade no mesmo período de tratamento. Nem o ICI 182,780 e nem o G-1 induziram aumento na pontuação de GFP-LC3 em células MCF-7 até 4 horas. Já os ensaios de citometria de fluxo demonstraram que ICI 182,780 levou ao aumento de compartimentos ácidos em células MCF-7. O G-1 não aumentou estes parâmetros em ambas as linhagens. Por outro lado, ICI 182,780 e G-1 não induziram à redução da viabilidade em células SKBr3 e nem à formação de compartimentos ácidos, como etapa final do processo autofágico. Conclusão O aumento de compartimentos ácidos pelo ICI 182,780 em células de câncer de mama positivas para receptores de estrógeno parece estar associado com seu efeito inibidor de receptores de estrógeno, mas sem o envolvimento de GPER. A compreensão desses mecanismos pode direcionar estudos sobre o envolvimento dos receptores nos processos celulares de resistência do câncer de mama.


Asunto(s)
Humanos , Femenino , Autofagia/efectos de los fármacos , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Antagonistas del Receptor de Estrógeno/farmacología , Fulvestrant/farmacología , Factores de Tiempo , Transfección/métodos , Supervivencia Celular/efectos de los fármacos , Western Blotting , Reproducibilidad de los Resultados , Análisis de Varianza , Sirolimus/farmacología , Receptores Acoplados a Proteínas G/análisis , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Células MCF-7 , Citometría de Flujo/métodos
16.
Clinics ; 75: e1980, 2020. graf
Artículo en Inglés | LILACS | ID: biblio-1133360

RESUMEN

Considering that female sexual hormones may modulate the inflammatory response and also exhibit direct effects on the cells of the immune system, herein, we intend to discuss the sex differences and the role of estradiol in modulating the lung and systemic inflammatory response, focusing on its possible application as a treatment modality for SARS-CoV-2 patients. COVID-19 patients develop severe hypoxemia early in the course of the disease, which is silent most of the time. Small fibrinous thrombi in pulmonary arterioles and a tumefaction of endothelial were observed in the autopsies of fatal COVID-19 cases. Studies showed that the viral infection induces a vascular process in the lung, which included vasodilation and endothelial dysfunction. Further, the proportions of CD4+ T and CD8+ T lymphocytes were strongly reduced in patients with severe SARS-CoV-2 infection. Estradiol is connected with CD4+ T cell numbers and increases T-reg cell populations, affecting immune responses to infection. It is known that estradiol exerts a protective effect on endothelial function, activating the generation of nitric oxide (NO) via endothelial nitric oxide synthase. Estrogen attenuates the vasoconstrictor response to various stimuli and induces vasodilation in the pulmonary vasculature during stress situations like hypoxia. It exerts a variety of rapid actions, which are initiated after its coupling with membrane receptors, which in turn, may positively modulate vascular responses in pulmonary disease and help to maintain microvascular flow. Direct and indirect mechanisms underlying the effects of estradiol were investigated, and the results point to a possible protective effect of estradiol against COVID-19, indicating that it may be considered as an adjuvant therapeutic element for the treatment of patients affected by the novel coronavirus.


Asunto(s)
Humanos , Animales , Masculino , Femenino , Ratas , Neumonía Viral/terapia , Infecciones por Coronavirus/terapia , Estradiol/uso terapéutico , Betacoronavirus , Inmunidad Innata , Inflamación/virología , Factores Sexuales , Pandemias , SARS-CoV-2 , COVID-19 , Inflamación/tratamiento farmacológico
17.
Int J Mol Sci ; 20(23)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795242

RESUMEN

Calcium (Ca2+) homeostasis is essential for cell maintenance since this ion participates in many physiological processes. For example, the spatial and temporal organization of Ca2+ signaling in the central nervous system is fundamental for neurotransmission, where local changes in cytosolic Ca2+ concentration are needed to transmit information from neuron to neuron, between neurons and glia, and even regulating local blood flow according to the required activity. However, under pathological conditions, Ca2+ homeostasis is altered, with increased cytoplasmic Ca2+ concentrations leading to the activation of proteases, lipases, and nucleases. This review aimed to highlight the role of Ca2+ signaling in neurodegenerative disease-related apoptosis, where the regulation of intracellular Ca2+ homeostasis depends on coordinated interactions between the endoplasmic reticulum, mitochondria, and lysosomes, as well as specific transport mechanisms. In neurodegenerative diseases, alterations-increased oxidative stress, energy metabolism alterations, and protein aggregation have been identified. The aggregation of α-synuclein, ß-amyloid peptide (Aß), and huntingtin all adversely affect Ca2+ homeostasis. Due to the mounting evidence for the relevance of Ca2+ signaling in neuroprotection, we would focus on the expression and function of Ca2+ signaling-related proteins, in terms of the effects on autophagy regulation and the onset and progression of neurodegenerative diseases.


Asunto(s)
Señalización del Calcio , Enfermedades Neurodegenerativas/metabolismo , Animales , Autofagia , Canales de Calcio/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
18.
Clinics (Sao Paulo) ; 73(suppl 1): e814s, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30540126

RESUMEN

Cancer is a leading cause of death worldwide, and its incidence is continually increasing. Although anticancer therapy has improved significantly, it still has limited efficacy for tumor eradication and is highly toxic to healthy cells. Thus, novel therapeutic strategies to improve chemotherapy, radiotherapy and targeted therapy are an important goal in cancer research. Macroautophagy (herein referred to as autophagy) is a conserved lysosomal degradation pathway for the intracellular recycling of macromolecules and clearance of damaged organelles and misfolded proteins to ensure cellular homeostasis. Dysfunctional autophagy contributes to many diseases, including cancer. Autophagy can suppress or promote tumors depending on the developmental stage and tumor type, and modulating autophagy for cancer treatment is an interesting therapeutic approach currently under intense investigation. Nutritional restriction is a promising protocol to modulate autophagy and enhance the efficacy of anticancer therapies while protecting normal cells. Here, the description and role of autophagy in tumorigenesis will be summarized. Moreover, the possibility of using fasting as an adjuvant therapy for cancer treatment, as well as the molecular mechanisms underlying this approach, will be presented.


Asunto(s)
Autofagia/fisiología , Ayuno/fisiología , Neoplasias/fisiopatología , Neoplasias/terapia , Antineoplásicos/farmacología , Protocolos Antineoplásicos , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Humanos , Neoplasias/metabolismo
19.
Toxicol Pathol ; 46(3): 348-358, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29683090

RESUMEN

Aging is a multifactorial process associated with functional deficits, and the brain is more prone to developing chronic degenerative diseases such as Parkinson's disease. Several groups have tried to correlate the age-related ultrastructural alterations to the neurodegeneration process using in vivo pharmacological models, but due to the limitations of the animal models, particularly in aged animals, the results are difficult to interpret. In this work, we investigated neurodegeneration induced by rotenone, as a pharmacological model of Parkinson's disease, in both young and aged Wistar rats. We assessed animal mobility, tyrosine hydroxylase staining in the substantia nigra pars compacta (SNpc), and TdT-mediated dUTP-biotin nick end labeling-positive nuclei and reactive oxygen species production in the striatum. Interestingly, the mobility impairment, dopaminergic neuron loss, and elevated number of apoptotic nuclei in the striatum of aged control rats were similar to young rotenone-treated animals. Moreover, we observed many ultrastructural alterations, such as swollen mitochondria in the striatum, and massive lipofuscin deposits in the SNpc of the aged rotenone-treated animals. We conclude that the rotenone model can be employed to explore age-related alterations in the ontogeny that can increase vulnerability in the striatum and SNpc, which may contribute to Parkinson's disease pathogenesis.


Asunto(s)
Envejecimiento/patología , Cuerpo Estriado/patología , Trastornos Parkinsonianos/patología , Sustancia Negra/patología , Animales , Ratas , Ratas Wistar , Rotenona/toxicidad , Desacopladores/toxicidad
20.
J Neurosci Res ; 96(1): 160-171, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28573674

RESUMEN

α-Synuclein is the major component of neuronal cytoplasmic aggregates called Lewy bodies, the main pathological hallmark of Parkinson disease. Although neurons are the predominant cells expressing α-synuclein in the brain, recent studies have demonstrated that primary astrocytes in culture also express α-synuclein and regulate α-synuclein trafficking. Astrocytes have a neuroprotective role in several detrimental brain conditions; we therefore analyzed the effects of the overexpression of wild-type α-synuclein and its A30P and A53T mutants on autophagy and apoptosis. We observed that in immortalized astrocyte cell lines, overexpression of α-synuclein proteins promotes the decrease of LC3-II and the increase of p62 protein levels, suggesting the inhibition of autophagy. When these cells were treated with rotenone, there was a loss of mitochondrial membrane potential, especially in cells expressing mutant α-synuclein. The level of this decrease was related to the toxicity of the mutants because they show a more intense and sustained effect. The decrease in autophagy and the mitochondrial changes in conjunction with parkin expression levels may sensitize astrocytes to apoptosis.


Asunto(s)
Apoptosis/fisiología , Astrocitos/metabolismo , Autofagia/fisiología , alfa-Sinucleína/biosíntesis , Animales , Astrocitos/patología , Línea Celular Transformada , Células Cultivadas , Femenino , Expresión Génica , Masculino , Ratas , Ratas Wistar , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA