Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Adv ; 5(11): eaax0217, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31807699

RESUMEN

Recombinant adeno-associated virus (AAV) vectors are transforming therapies for rare human monogenic deficiency diseases. However, adaptive immune responses to AAV and its limited DNA insert capacity, restrict their therapeutic potential. HEDGES (high-level extended duration gene expression system), a nonviral DNA- and liposome-based gene delivery platform, overcomes these limitations in immunocompetent mice. Specifically, one systemic HEDGES injection durably produces therapeutic levels of transgene-encoded human proteins, including FDA-approved cytokines and monoclonal antibodies, without detectable integration into genomic DNA. HEDGES also controls protein production duration from <3 weeks to >1.5 years, does not induce anti-vector immune responses, is reexpressed for prolonged periods following reinjection, and produces only transient minimal toxicity. HEDGES can produce extended therapeutic levels of multiple transgene-encoded therapeutic human proteins from DNA inserts >1.5-fold larger than AAV-based therapeutics, thus creating combinatorial interventions to effectively treat common polygenic diseases driven by multigenic abnormalities.


Asunto(s)
ADN/genética , Técnicas de Transferencia de Gen , Transgenes , Animales , Línea Celular , ADN/farmacología , Femenino , Humanos , Ratones , Ratones Endogámicos ICR
2.
Oncogenesis ; 8(8): 42, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409772

RESUMEN

Cholangiocarcinoma (CCA) is a rare, highly invasive malignancy, and its incidence is increasing globally. MicroRNAs (miRNAs) mediate a wide array of cellular and biological processes and are dysregulated in various tumors. The functional and biological roles of miRNAs in CCA have not been fully elucidated. In this study, we show that miR-876 expression levels and copy number are significantly attenuated in the TCGA cohort of CCA tissue samples. TCGA expression data was consistent with the observed substantial decrease in miR-876 expression in patient samples and CCA cell lines. In-silico algorithm databases revealed BCL-XL as a potential target of miR-876. We observed miR-876 expression to be downregulated, whereas, BCL-XL upregulated in CCA cell lines. BCL-XL was identified as a direct functional target of miR-876 in CCA. miR-876-mediated reduction of BCL-XL regulated cell survival, induced apoptosis and caspase 3/7 expression in CCA. BCL-XL overexpression reversed the miR-876 mediated effect on CCA cell growth and apoptosis. Stable overexpression of miR-876 produced potent tumor suppressor activity and in vivo tumor cell growth reduction. Overexpression of miR-876 in a patient-derived xenograft (PDX) cell line significantly suppressed BCL-XL expression and spheroid formation with a concomitant induction of caspase 3/7 activity and apoptosis. This study demonstrates a novel tumor suppressor role for miR-876 in CCA, identifies BCL-XL as an actionable target, and suggests a potential therapeutic role for miR-876 in CCA.

3.
Proc Natl Acad Sci U S A ; 113(22): 6254-8, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185926

RESUMEN

Microphthalmia-associated transcription factor (MITF) plays a critical and complex role in melanocyte transformation. Although several downstream targets of MITF action have been identified, the precise mechanisms by which MITF promotes melanocytic tumor progression are incompletely understood. Recent studies identified an oncogenic role for the bromodomain plant homeodomain finger transcription factor (BPTF) gene in melanoma progression, in part through activation of BCL2, a canonical target of MITF signaling. Analysis of the BPTF promoter identified a putative MITF-binding site, suggesting that MITF may regulate BPTF expression. Overexpression of MITF resulted in up-regulation of BPTF in a panel of melanoma and melanocyte cell lines. shRNA-mediated down-regulation of MITF in melanoma cells was accompanied by down-regulation of BPTF and BPTF-regulated genes (including BCL2) and resulted in reduced proliferative capacity of melanoma cells. The suppression of cell growth mediated by MITF silencing was rescued by overexpression of BPTF cDNA. Binding of MITF to the BPTF promoter was demonstrated using ChIP analysis. MITF overexpression resulted in direct transcriptional activation of BPTF, as evidenced by increased luciferase activity driven by the BPTF promoter. These results indicate that BPTF transduces key prosurvival signals driven by MITF, further supporting its important role in promoting melanoma cell survival and progression.


Asunto(s)
Antígenos Nucleares/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Melanocitos/citología , Melanoma/patología , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Antígenos Nucleares/genética , Apoptosis , Sitios de Unión , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Humanos , Luciferasas/metabolismo , Melanocitos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción/genética , Activación Transcripcional
4.
Oncotarget ; 7(15): 19519-30, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26799586

RESUMEN

UNLABELLED: Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a poor prognosis, which lacks effective targeted therapies. There is an urgent need to better understand the underlying molecular mechanisms of TNBC aggressiveness and identify novel, efficient targets for therapeutic intervention. METHODS: miRNA qRT-PCR was used to determine the expression of miR-1296 in cell lines. The miR-1296 overexpression effects in TNBC cell lines were investigated using assays of colony formation, cell cycle and apoptosis. Immunoblotting was performed to determine the expression of the miR-1296 target protein, and luciferase assays were performed to confirm the target of miR-1296 action. RESULTS: miR-1296 expression was significantly suppressed in TNBC cell lines and tissues samples. Overexpression of miR-1296 significantly suppressed cell proliferation of two TNBC cell lines when compared to control miRNA-expressing cells. A significant decrease in the S-phase of the cell cycle was observed following miR-1296 overexpression, accompanied by induction of apoptosis in TNBC cells. Cyclin D1 (CCND1) was identified as a target of miR-1296 action. miR-1296 overexpression significantly suppressed the luciferase activity of reporter plasmid containing the 3'UTR of CCND1 and protein expression levels of CCND1 in TNBC cells. The effects of miR-1296 overexpression on TNBC cell growth were reversed by CCND1 overexpression. miR-1296 expression sensitized TNBC cells to cisplatin treatment. CONCLUSION: Our results demonstrate a novel tumor suppressor role for miR-1296 in triple-negative breast cancer cell lines, identify CCND1 as its target of action, and demonstrate a potential role for miR-1296 in sensitizing breast cancer cells to cisplatin.


Asunto(s)
Ciclina D1/genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/genética , Regiones no Traducidas 3'/genética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Ciclina D1/metabolismo , Humanos , Immunoblotting , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA