Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sci Rep ; 13(1): 13635, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604894

RESUMEN

Palaeogenomics is contributing to refine our understanding of many major evolutionary events at an unprecedented resolution, with relevant impacts in several fields, including phylogenetics of extinct species. Few extant and extinct animal species from Mediterranean regions have been characterised at the DNA level thus far. The Sardinian pika, Prolagus sardus (Wagner, 1829), was an iconic lagomorph species that populated Sardinia and Corsica and became extinct during the Holocene. There is a certain scientific debate on the phylogenetic assignment of the extinct genus Prolagus to the family Ochotonidae (one of the only two extant families of the order Lagomorpha) or to a separated family Prolagidae, or to the subfamily Prolaginae within the family Ochotonidae. In this study, we successfully reconstructed a portion of the mitogenome of a Sardinian pika dated to the Neolithic period and recovered from the Cabaddaris cave, an archaeological site in Sardinia. Our calibrated phylogeny may support the hypothesis that the genus Prolagus is an independent sister group to the family Ochotonidae that diverged from the Ochotona genus lineage about 30 million years ago. These results may contribute to refine the phylogenetic interpretation of the morphological peculiarities of the Prolagus genus already described by palaeontological studies.


Asunto(s)
ADN Antiguo , Lagomorpha , Animales , Filogenia , Evolución Biológica , Arqueología
2.
Anim Genet ; 54(4): 510-525, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37194440

RESUMEN

The domestic canary (Serinus canaria) is one of the most common pet birds and has been extensively selected and bred over the last few centuries to constitute many different varieties. Plumage pigmentation is one of the main phenotypic traits that distinguish canary breeds and lines. Feather colours in these birds, similarly to other avian species, are mainly depended on the presence of two major types of pigments: carotenoids and melanins. In this study, we exploited whole genome sequencing (WGS) datasets produced from five canary lines or populations (Black Frosted Yellow, Opal, Onyx, Opal × Onyx and Mogno, some of which carrying different putative dilute alleles), complemented with other WGS datasets retrieved from previous studies, to identify candidate genes that might explain pigmentation variability across canary breeds and varieties. Sequencing data were obtained using a DNA pool-seq approach and genomic data were compared using window-based FST analyses. We identified signatures of selection in genomic regions harbouring genes involved in carotenoid-derived pigmentation variants (CYP2J19, EDC, BCO2 and SCARB1), confirming the results reported by previous works, and identified several other signatures of selection in the correspondence of melanogenesis-related genes (AGRP, ASIP, DCT, EDNRB, KITLG, MITF, MLPH, SLC45A2, TYRP1 and ZEB2). Two putative causative mutations were identified in the MLPH gene that may explain the Opal and Onyx dilute mutant alleles. Other signatures of selection were also identified that might explain additional phenotypic differences between the investigated canary populations.


Asunto(s)
Canarios , Pigmentación , Animales , Canarios/genética , Color , Mutación , Pigmentación/genética , Carotenoides , Alelos , Secuenciación Completa del Genoma/veterinaria
3.
Sci Rep ; 12(1): 19541, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379985

RESUMEN

Awareness has been raised over the last years on the genetic integrity of autochthonous honey bee subspecies. Genomic tools available in Apis mellifera can make it possible to measure this information by targeting individual honey bee DNA. Honey contains DNA traces from all organisms that contributed or were involved in its production steps, including the honey bees of the colony. In this study, we designed and tested a genotyping by sequencing (GBS) assay to analyse single nucleotide polymorphisms (SNPs) of A. mellifera nuclear genome using environmental DNA extracted from honey. A total of 121 SNPs (97 SNPs informative for honey bee subspecies identification and 24 SNPs associated with relevant traits of the colonies) were used in the assay to genotype honey DNA, which derives from thousands of honey bees. Results were integrated with information derived from previous studies and whole genome resequencing datasets. This GBS method is highly reliable in estimating honey bee SNP allele frequencies of the whole colony from which the honey derived. This assay can be used to identify the honey bee subspecies of the colony that produced the honey and, in turn, to authenticate the entomological origin of the honey.


Asunto(s)
ADN Ambiental , Miel , Abejas/genética , Animales , Genotipo , Metagenómica , ADN
4.
Vet Sci ; 9(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622741

RESUMEN

Environmental DNA (eDNA) contained in honey derives from the organisms that directly and indirectly have been involved in the production process of this matrix and that have played a role in the hive ecosystems where the honey has been produced. In this study we set up PCR-based assays to detect the presence of DNA traces left in the honey by two damaging honey bee pests: the small hive beetle (Aethina tumida) and the greater wax moth (Galleria mellonella). DNA was extracted from 82 honey samples produced in Italy and amplified using two specific primer pairs that target the mitochondrial gene cytochrome oxidase I (COI) of A. tumida and two specific primer pairs that target the same gene in G. mellonella. The limit of detection was tested using sequential dilutions of the pest DNA. Only one honey sample produced in Calabria was positive for A. tumida whereas about 66% of all samples were positively amplified for G. mellonella. The use of honey eDNA could be important to establish early and effective measures to contain at the local (e.g., apiary) or regional scales these two damaging pests and, particularly for the small hive beetle, to prevent its widespread diffusion.

5.
Insects ; 12(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34680637

RESUMEN

The complementary sex determiner (csd) gene plays an essential role in the sex determination of Apis mellifera L. Females develop only if fertilized eggs have functional heterozygous genotypes at this gene whereas males, being haploids, are hemizygous. Two identical csd alleles produce non vital males. In light of the recent decline in honey bee populations, it is therefore important to monitor the allele variability at this gene. In this study, we tested the application of next generation semiconductor-based sequencing technology (Ion Torrent) coupled with environmental honey DNA as a source of honey bee genome information to retrieve massive sequencing data for the analysis of variability at the hypervariable region (HVR) of the csd gene. DNA was extracted from 12 honey samples collected from honeycombs directly retrieved from 12 different colonies. A specifically designed bioinformatic pipeline, applied to analyze a total of about 1.5 million reads, identified a total of 160 different csd alleles, 55% of which were novel. The average number of alleles per sample was compatible with the number of expected patrilines per colony, according to the mating behavior of the queens. Allele diversity at the csd could also provide information useful to reconstruct the history of the honey.

6.
Insects ; 12(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34357280

RESUMEN

Growing interest has been emerging on the need to monitor the genetic integrity of the European Apis mellifera subspecies that could be threatened by the human-mediated dispersion of non-native populations and lines. Mitochondrial DNA (mtDNA) lineages can provide useful information for this purpose. In this study, we took advantage of the environmental DNA (eDNA) contained in the honey, which can be analyzed to detect the main groups of mitotypes of the honey bees that produced it. In this study, we applied this eDNA to produce a distribution map all over the Italian peninsula and the two major islands (Sicily and Sardinia) of the following three honey bee mtDNA lineages: A, C and M. A total of 607 georeferenced honey samples, produced in all Italian regions, was analyzed to detect these lineages. The A lineage was widespread in Sicily, as expected, considering that A. m. siciliana carries the African lineage. Surprisingly, this lineage was also reported in about 14% of all other samples produced in almost all continental regions, and in Sardinia. The applied method obtained an updated distribution map of honey bee mtDNA lineages that could be useful to design policies for the conservation of Italian honey bee genetic resources.

7.
J Invertebr Pathol ; 184: 107628, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34090931

RESUMEN

Lotmaria passim is a trypanosomatid that infects honey bees. In this study, we established an axenic culture of L. passim from Italian isolates and then used its DNA as a control in subsequent analyses that investigated environmental DNA (eDNA) to detect this trypasonosomatid. The source of eDNA was honey, which has been already demonstrated to be useful to detect honey bee parasites. DNA from a total of 164 honey samples collected in the North of Italy was amplified with three L. passim specific PCR primers and 78% of the analysed samples gave positive results. These results indicated a high prevalence rate of this trypanosomatid in the North of Italy, where it might be considered another threat to honey bee health.


Asunto(s)
Abejas/parasitología , ADN Ambiental/análisis , Miel/análisis , Trypanosomatina/aislamiento & purificación , Animales , Apicultura , Italia
8.
Animals (Basel) ; 11(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670521

RESUMEN

Mora Romagnola is an autochthonous pig breed, raised in the north of Italy. Mono-breed pork products of this breed are part of important niche value chain that is intrinsically linked to the conservation of this local genetic resources that can only survive due to the premium price that these products can obtain on the market. However, the added value attracts fraudsters that unscrupulously sell mis-labelled Mora Romagnola products, causing consumer distrust that, in turn, undermines the conservation strategy of this breed. To monitor and better characterise this local breed, we phenotyped 826 Mora Romagnola pigs for three breed-specific traits. Then, we genotyped almost all living sows and boars registered to the Herd Book (n. = 357 animals) for polymorphisms in the MC1R and NR6A1 genes (affecting coat colour and vertebral number, respectively). The results were used to re-define the breed descriptors of the Mora Romagnala breed that included information on the allowed genotypes at these two genes. A few pigs that did not carry the allowed genotypes were excluded from its Herd Book. Finally, we evaluated the usefulness of these DNA markers to authenticate Mora Romagnola meat against meat derived from other 11 pig breeds and wild boars. To our knowledge, the Mora Romagnola Herd Book is one of the first examples that established a direct link between a genetic standard of a breed with the possibility to authenticate mono-breed products using DNA markers with the specific purpose to combat frauds and, indirectly, support the conservation of a livestock genetic resource.

9.
Vet Sci ; 7(3)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824137

RESUMEN

Environmental DNA (eDNA) has been proposed as a powerful tool to detect and monitor cryptic, elusive, or invasive organisms. We recently demonstrated that honey constitutes an easily accessible source of eDNA. In this study, we extracted DNA from 102 honey samples (74 from Italy and 28 from 17 other countries of all continents) and tested the presence of DNA of nine honey bee pathogens and parasites (Paenibacillus larvae, Melissococcus plutonius, Nosema apis, Nosema ceranae, Ascosphaera apis,Lotmaria passim, Acarapis woodi, Varroa destructor, and Tropilaelaps spp.) using qualitative PCR assays. All honey samples contained DNA from V. destructor, confirming the widespread diffusion of this mite. None of the samples gave positive amplifications for N. apis, A. woodi, and Tropilaelaps spp. M. plutonius was detected in 87% of the samples, whereas the other pathogens were detected in 43% to 57% of all samples. The frequency of Italian samples positive for P. larvae was significantly lower (49%) than in all other countries (79%). The co-occurrence of positive samples for L. passim and A. apis with N. ceranae was significant. This study demonstrated that honey eDNA can be useful to establish monitoring tools to evaluate the sanitary status of honey bee populations.

10.
Sci Rep ; 10(1): 9279, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518251

RESUMEN

Honey bees are large-scale monitoring tools due to their extensive environmental exploration. In their activities and from the hive ecosystem complex, they get in close contact with many organisms whose traces can be transferred into the honey, which can represent an interesting reservoir of environmental DNA (eDNA) signatures and information useful to analyse the honey bee hologenome complexity. In this study, we tested a deep shotgun sequencing approach of honey DNA coupled with a specifically adapted bioinformatic pipeline. This methodology was applied to a few honey samples pointing out DNA sequences from 191 organisms spanning different kingdoms or phyla (viruses, bacteria, plants, fungi, protozoans, arthropods, mammals). Bacteria included the largest number of species. These multi-kingdom signatures listed common hive and honey bee gut microorganisms, honey bee pathogens, parasites and pests, which resembled a complex interplay that might provide a general picture of the honey bee pathosphere. Based on the Apis mellifera filamentous virus genome diversity (the most abundant detected DNA source) we obtained information that could define the origin of the honey at the apiary level. Mining Apis mellifera sequences made it possible to identify the honey bee subspecies both at the mitochondrial and nuclear genome levels.


Asunto(s)
ADN Ambiental/análisis , Miel/análisis , Metagenómica , Animales , Bacterias/genética , Abejas , ADN Ambiental/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Genoma Fúngico/genética , Genoma de Planta/genética , Genoma de Protozoos/genética , Genoma Viral/genética , Análisis de Secuencia de ADN
11.
Mar Genomics ; 51: 100735, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31866382

RESUMEN

Sea cucumbers (Holothuroidea) are ecologically important organisms for their bioturbation and alkalinization activities of the seabed. These species are extensively fished as they are considered luxury food. Sea cucumbers are also relevant for biomedical studies and the production of bioactive compounds. A few initiatives are recently evaluating sea cucumbers as novel aquaculture species. The aim of this study was to provide morphological and genetic information useful for the identification of Holothuria polii, the white spot sea cucumber (a common species of the Mediterranean Sea). We generated the complete sequence of the mitochondrial DNA (mtDNA) genome of this species and combined it with a detailed ossicle characterization of the sequenced specimen by scanning electron microscopic analysis. Ossicles (known also as sclerites) are anatomical features that can discriminate Holothuroidea species, including the closely related ones of the genus Holothuria. The complete mitochondrial genome was assembled, functionally annotated and then used to evaluate the phylogenetic relationship of H. polii against the other few Holothuroidea species for which the whole mtDNA was available. The 15,907 bp H. polii mtDNA sequence has the same gene order already reported for H. scabra, H. forskali and other species of the same class. Cox1 and 16S gene sequences were informative for species identification across the genus and could be used for the authentication of commercialized Holothuria spp. The mitochondrial genome sequence presented here provides the basis to a future analysis of the variability of H. polii populations in the Mediterranean region.


Asunto(s)
ADN Mitocondrial/análisis , Genoma Mitocondrial , Holothuria/genética , Animales , Filogenia , Análisis de Secuencia de ADN
12.
J Invertebr Pathol ; 161: 47-53, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30707918

RESUMEN

Honey contains DNA from many different organisms that are part of hive micro-environmental niches and honey bee pathospheres. In this study, we recovered and sequenced mite mitochondrial DNA (mtDNA) from honey from different locations around the world (Europe, Asia, Africa, North and South America). DNA extracted from 17 honey samples was amplified with eight primer pairs targeting three mite mtDNA genes, obtaining 88 amplicons that were sequenced with an Ion Torrent sequencing platform. A bioinformatic pipeline compared produced reads with Varroa spp. mtDNA sequence entries available in GenBank and assigned them to different mitotypes. In all honey samples, the highest percentage of reads was attributed to the K1 lineage, including a few variants derived from it, in addition to J1 reads observed in the two South American samples and C1-1 reads obtained from the Chinese honey. This study opens new possibilities to analyse mite lineages and variants and monitor their geographical and temporal distribution, simplifying surveillance against this damaging honey bee parasite.


Asunto(s)
Abejas/parasitología , ADN Ambiental/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Miel/análisis , Varroidae , Animales , ADN Mitocondrial , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Miel/parasitología , Varroidae/genética
13.
PLoS One ; 13(10): e0205575, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30379893

RESUMEN

Honey bees are considered large-scale monitoring tools due to their environmental exploration and foraging activities. Traces of these activities can be recovered in the honey that also may reflect the hive ecological micro-conditions in which it has been produced. This study applied a next generation sequencing platform (Ion Torrent) for shotgun metagenomic analysis of honey environmental DNA (eDNA). The study tested a methodological framework to interpret DNA sequence information useful to describe the complex ecosystems of the honey bee colony superorganism, its pathosphere and the heterogeneity of the agroecological environments and environmental sources that left DNA marks in the honey. Analysis of two honeys reported sequence reads from five main organism groups (kingdoms or phyla): arthropods (that mainly included reads from Apis mellifera, several other members of the Hymenotpera, in addition to members of the Diptera, Coleoptera and Lepidoptera, as well as aphids and mites), plants (that clearly confirmed the botanical origin of the two honeys, i.e. orange tree blossom and eucalyptus tree blossom honeys), fungi and bacteria (including common hive and honey bee gut microorganisms, honey bee pathogens and plant pathogens), and viruses (which accounted for the largest number of reads in both honeys, mainly assigned to Apis mellifera filamentous virus). The shotgun metagenomic approach that was used in this study can be applied in large scale experiments that might have multiple objectives according to the multi-kingdom derived eDNA that is contained in the honey.


Asunto(s)
ADN , Miel , Metagenoma , Metagenómica , Animales , Abejas , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica/métodos
14.
Genes (Basel) ; 9(9)2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30142960

RESUMEN

Coat color dilution corresponds to a specific pigmentation phenotype that leads to a dilution of wild type pigments. It affects both eumelanin and pheomelanin containing melanosomes. The mode of inheritance of the dilution phenotype is autosomal recessive. Candidate gene approaches focused on the melanophilin (MLPH) gene highlighted two variants associated with the dilution phenotype in rabbits: The c.111-5C>A variant that is located in an acceptor splice site or the c.585delG variant, a frameshift mutation. On the transcript level, the skipping of two exons has been reported as the molecular mechanism responsible for the coat color dilution. To clarify, which of the two variants represents the causal variant, (i) we analyzed their allelic segregation by genotyping Castor and Chinchilla populations, and (ii) we evaluated their functional effects on the stability of MLPH transcripts in skin samples of animals with diluted or wild type coat color. Firstly, we showed that the c.585delG variant showed perfect association with the dilution phenotype in contrast to the intronic c.111-5C>A variant. Secondly, we identified three different MLPH isoforms including the wild type isoform, the exon-skipping isoform and a retained intron isoform. Thirdly, we observed a drastic and significant decrease of MLPH transcript levels in rabbits with a coat color dilution (p-values ranging from 10-03 to 10-06). Together, our results bring new insights into the coat color dilution trait.

15.
Sci Rep ; 8(1): 9996, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968727

RESUMEN

Honeydew produced from the excretion of plant-sucking insects (order Hemiptera) is a carbohydrate-rich material that is foraged by honey bees to integrate their diets. In this study, we used DNA extracted from honey as a source of environmental DNA to disclose its entomological signature determined by honeydew producing Hemiptera that was recovered not only from honeydew honey but also from blossom honey. We designed PCR primers that amplified a fragment of mitochondrial cytochrome c oxidase subunit 1 (COI) gene of Hemiptera species using DNA isolated from unifloral, polyfloral and honeydew honeys. Ion Torrent next generation sequencing metabarcoding data analysis assigned Hemiptera species using a customized bioinformatic pipeline. The forest honeydew honeys reported the presence of high abundance of Cinara pectinatae DNA, confirming their silver fir forest origin. In all other honeys, most of the sequenced reads were from the planthopper Metcalfa pruinosa for which it was possible to evaluate the frequency of different mitotypes. Aphids of other species were identified from honeys of different geographical and botanical origins. This unique entomological signature derived by environmental DNA contained in honey opens new applications for honey authentication and to disclose and monitor the ecology of plant-sucking insects in agricultural and forest landscapes.


Asunto(s)
Entomología/métodos , Hemípteros/metabolismo , Miel/análisis , Agricultura , Animales , Abejas , ADN , Código de Barras del ADN Taxonómico/métodos , Complejo IV de Transporte de Electrones/genética , Flores , Bosques , Hemípteros/clasificación , Insectos , Plantas , Reacción en Cadena de la Polimerasa/métodos
16.
Food Chem ; 246: 90-98, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29291883

RESUMEN

In this study, we applied a next generation sequencing (NGS) technology (Ion Torrent) for species identification based on three mitochondrial DNA (mtDNA) regions amplified on DNA extracted from dairy products. Sequencing reads derived from three libraries, obtained from artificial DNA pools or from pooled amplicons, were used to test the method. Then, sequencing results from five libraries obtained from two mixed goat and cow milk samples, one buffalo mozzarella cheese, one goat crescenza cheese and one artisanal cured ricotta cheese, were able to detect all expected species in addition to undeclared species in a few of them. Mining generated reads it was possible to identify different dairy species mitotypes and the presence of human DNA that could constitute a potential marker to monitor the hygienic level of dairy products. Overall results demonstrated the usefulness of NGS for species identification in food products and its possible application for food authentication.


Asunto(s)
Productos Lácteos/análisis , Análisis de los Alimentos/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Semiconductores , Animales , Búfalos/genética , Bovinos , Queso/análisis , ADN Mitocondrial , Análisis de los Alimentos/métodos , Cabras/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Leche
17.
PLoS One ; 12(6): e0179462, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28662150

RESUMEN

Shot-gun next generation sequencing (NGS) on whole DNA extracted from specimens collected from mammals often produces reads that are not mapped (i.e. unmapped reads) on the host reference genome and that are usually discarded as by-products of the experiments. In this study, we mined Ion Torrent reads obtained by sequencing DNA isolated from archived blood samples collected from 100 performance tested Italian Large White pigs. Two reduced representation libraries were prepared from two DNA pools constructed each from 50 equimolar DNA samples. Bioinformatic analyses were carried out to mine unmapped reads on the reference pig genome that were obtained from the two NGS datasets. In silico analyses included read mapping and sequence assembly approaches for a viral metagenomic analysis using the NCBI Viral Genome Resource. Our approach identified sequences matching several viruses of the Parvoviridae family: porcine parvovirus 2 (PPV2), PPV4, PPV5 and PPV6 and porcine bocavirus 1-H18 isolate (PBoV1-H18). The presence of these viruses was confirmed by PCR and Sanger sequencing of individual DNA samples. PPV2, PPV4, PPV5, PPV6 and PBoV1-H18 were all identified in samples collected in 1998-2007, 1998-2000, 1997-2000, 1998-2004 and 2003, respectively. For most of these viruses (PPV4, PPV5, PPV6 and PBoV1-H18) previous studies reported their first occurrence much later (from 5 to more than 10 years) than our identification period and in different geographic areas. Our study provided a retrospective evaluation of apparently asymptomatic parvovirus infected pigs providing information that could be important to define occurrence and prevalence of different parvoviruses in South Europe. This study demonstrated the potential of mining NGS datasets non-originally derived by metagenomics experiments for viral metagenomics analyses in a livestock species.


Asunto(s)
ADN Viral/genética , ADN/genética , Metagenómica , Parvovirus Porcino/genética , Virosis/genética , Animales , Estudios Retrospectivos , Porcinos
18.
DNA Res ; 24(5): 487-498, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460080

RESUMEN

Nuclear DNA sequences of mitochondrial origin (numts) are derived by insertion of mitochondrial DNA (mtDNA), into the nuclear genome. In this study, we provide, for the first time, a genome picture of numts inserted in the pig nuclear genome. The Sus scrofa reference nuclear genome (Sscrofa10.2) was aligned with circularized and consensus mtDNA sequences using LAST software. A total of 430 numt sequences that may represent 246 different numt integration events (57 numt regions determined by at least two numt sequences and 189 singletons) were identified, covering about 0.0078% of the nuclear genome. Numt integration events were correlated (0.99) to the chromosome length. The longest numt sequence (about 11 kbp) was located on SSC2. Six numts were sequenced and PCR amplified in pigs of European commercial and local pig breeds, of the Chinese Meishan breed and in European wild boars. Three of them were polymorphic for the presence or absence of the insertion. Surprisingly, the estimated age of insertion of two of the three polymorphic numts was more ancient than that of the speciation time of the Sus scrofa, supporting that these polymorphic sites were originated from interspecies admixture that contributed to shape the pig genome.


Asunto(s)
Evolución Molecular , Genoma , Genómica , Mutación INDEL , Polimorfismo Genético , Sus scrofa/genética , Animales , Núcleo Celular/genética , ADN Mitocondrial , Mitocondrias/genética , Filogenia , Análisis de Secuencia de ADN
19.
Anim Biotechnol ; 27(2): 77-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26913548

RESUMEN

A shortcut to identify DNA markers associated with economic traits is to use a candidate gene approach that is still useful in livestock species in which molecular tools and resources are not advanced or not well developed. Mutations in the growth hormone receptor (GHR) gene associated with production traits have been already described in several livestock species. For this reason GHR could be an interesting candidate gene in the rabbit. In this study we re-sequenced all exons and non-coding regions of the rabbit GHR gene in a panel of 10 different rabbits and identified 10 single nucleotide polymorphisms (SNPs). One of them (g.63453192C>G or c.106C>G), located in exon 3 was a missense mutation (p.L36V) substituting an amino acid in a highly conserved position across all mammals. This mutation was genotyped in 297 performance tested rabbits of a meat male line and association analysis showed that the investigated SNP was associated with weight at 70 days (P < 0.05). The most frequent genotype (GG) was in animals with higher weight at this age, suggesting that the high directional selection pressure toward this trait since the constitution of the genotyped line might have contributed to shape allele frequencies at this polymorphic site.


Asunto(s)
Peso Corporal/genética , Carne/normas , Polimorfismo de Nucleótido Simple/genética , Receptores de Somatotropina/genética , Secuencia de Aminoácidos , Animales , Femenino , Estudios de Asociación Genética , Masculino , Conejos , Receptores de Somatotropina/química , Alineación de Secuencia
20.
PLoS One ; 10(7): e0131925, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26151450

RESUMEN

Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.


Asunto(s)
Equidae/genética , Genoma , Caballos/genética , Polimorfismo de Nucleótido Simple , Animales , Hibridación Genómica Comparativa , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Semiconductores , Análisis de Secuencia de ADN , Cromosoma X , Cromosoma Y
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA