Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38612907

RESUMEN

Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.


Asunto(s)
Ácidos Grasos Omega-3 , Atrofia Geográfica , Degeneración Macular Húmeda , Humanos , Ácidos Grasos Insaturados/uso terapéutico , Ácidos Grasos , Ácidos Grasos Omega-3/uso terapéutico
4.
Biomater Sci ; 9(10): 3638-3644, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33949449

RESUMEN

Synthetic OligoNucleotides (ON) provide promising therapeutic tools for controlling specifically genetic expression in a broad range of diseases from cancers to viral infections. Beside their chemical stability and intracellular delivery, the controlled release of therapeutic sequences remains an important challenge for successful clinical applications. In this work, Lipid-OligoNucleotide (LON) conjugates stabilizing hydrogels are reported and characterized by rheology and cryo-scanning electron microscopy (cryo-SEM). These studies revealed that lipid conjugation of antisense oligonucleotides featuring partial self-complementarity resulted in entangled pearl-necklace networks, which were obtained through micelle-micelle interaction driven by duplex formation. Owing to these properties, the Lipid AntiSense Oligonucleotide (LASO) sequences exhibited a prolonged release after subcutaneous administration compared to the non-lipidic antisense (ASO) one. The LASO self-assembly based hydrogels obtained without adjuvant represent an innovative approach for the sustained self-delivery of therapeutic oligonucleotides.


Asunto(s)
Hidrogeles , Oligonucleótidos , Lípidos , Micelas , Oligonucleótidos Antisentido
5.
RSC Adv ; 9(33): 18844-18852, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35516884

RESUMEN

Nucleolipid supramolecular assemblies are promising Drug Delivery Systems (DDS), particularly for nucleic acids. Studies based on negatively and positively charged nucleolipids (diC16dT and DOTAU, respectively) demonstrated appropriate stability, safety, and purity profile to be used as DDS. Methylene Blue (MB) remains a good antimalarial drug candidate, and could be considered for the treatment of uncomplicated or severe malaria. However, the development of MB as an antimalarial drug has been hampered by a high dose regimen required to obtain a proper effect, and a short plasmatic half life. We demonstrated that nanoparticles formed by nucleolipid encapsulation of MB using diC16dT and DOTAU (MB-NPs) is an interesting approach to improve drug stability and delivery. MB-NPs displayed sizes, PDI, zeta values, and colloidal stability allowing a possible use in intravenous formulations. Nanoparticles partially protected MB from oxido-reduction reactions, thus preventing early degradation during storage, and allowing prolongated pharmacokinetic in plasma. MB-NPs' efficacy, tested in vitro on sensitive or multidrug resistant strains of Plasmodium falciparum, was statistically similar to MB alone, with a slightly lower IC50. This nucleolipid-based approach to protect drugs against degradation represents a new alternative tool to be considered for malaria treatment.

6.
Nanoscale Res Lett ; 13(1): 17, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29327307

RESUMEN

Although the application of sorafenib, a small inhibitor of tyrosine protein kinases, to cancer treatments remains a worldwide option in chemotherapy, novel strategies are needed to address the low water solubility (< 5 µM), toxicity, and side effects issues of this drug. In this context, the use of nanocarriers is currently investigated in order to overcome these drawbacks. In this contribution, we report a new type of sorafenib-based nanoparticles stabilized by hybrid nucleoside-lipids. The solid lipid nanoparticles (SLNs) showed negative or positive zeta potential values depending on the nucleoside-lipid charge. Transmission electron microscopy of sorafenib-loaded SLNs revealed parallelepiped nanoparticles of about 200 nm. Biological studies achieved on four different cell lines, including liver and breast cancers, revealed enhanced anticancer activities of Sorafenib-based SLNs compared to the free drug. Importantly, contrast phase microscopy images recorded after incubation of cancer cells in the presence of SLNs at high concentration in sorafenib (> 80 µM) revealed a total cancer cell death in all cases. These results highlight the potential of nucleoside-lipid-based SLNs as drug delivery systems.

7.
Toxins (Basel) ; 9(11)2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-29068378

RESUMEN

The type B trichothecene mycotoxins deoxynivalenol (DON), nivalenol (NIV) and fusarenon-X (FX) are structurally related secondary metabolites frequently produced by Fusarium on wheat. Consequently, DON, NIV and FX contaminate wheat dusts, exposing grain workers to toxins by inhalation. Those trichothecenes at low, relevant, exposition concentrations have differential effects on intestinal cells, but whether such differences exist with respiratory cells is mostly unknown, while it is required to assess the combined risk of exposure to mycotoxins. The goal of the present study was to compare the effects of DON, NIV and FX alone or in combination on the viability and IL-6 and IL-8-inducing capacity of human epithelial cells representative of the respiratory tract: primary human airway epithelial cells of nasal (hAECN) and bronchial (hAECB) origin, and immortalized human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines. We report that A549 cells are particularly resistant to the cytotoxic effects of mycotoxins. FX is more toxic than DON and NIV for all epithelial cell types. Nasal and bronchial primary cells are more sensitive than bronchial and alveolar cell lines to combined mycotoxin mixtures at low concentrations, although they are less sensitive to mycotoxins alone. Interactions between mycotoxins at low concentrations are rarely additive and are observed only for DON/NIV and NIV/FX on hAECB cells and DON/NIV/FX on A549 cells. Most interactions at low mycotoxin concentrations are synergistic, antagonistic interactions being observed only for DON/FX on hAECB, DON/NIV on 16HBE14o- and NIV/FX on A549 cells. DON, NIV and FX induce, albeit at different levels, IL-6 and IL-8 release by all cell types. However, NIV and FX at concentrations of low cytotoxicity induce IL-6 release by hAECB and A549 cells, and IL-8 release by hAECN cells. Overall, these data suggest that combined exposure to mycotoxins at low concentrations have a stronger effect on primary nasal epithelial cells than on bronchial epithelial cells and activate different inflammatory pathways. This information is particularly relevant for future studies about the hazard of occupational exposure to mycotoxins by inhalation and its impact on the respiratory tract.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Sistema Respiratorio/citología , Tricotecenos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo
8.
J Toxicol Environ Health A ; 78(13-14): 871-85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26167753

RESUMEN

Chronic inhalation of grain dust is associated with asthma and chronic bronchitis in grain worker populations. Exposure to fungal particles was postulated to be an important etiologic agent of these pathologies. Fusarium species frequently colonize grain and straw and produce a wide array of mycotoxins that impact human health, necessitating an evaluation of risk exposure by inhalation of Fusarium and its consequences on immune responses. Data showed that Fusarium culmorum is a frequent constituent of aerosols sampled during wheat harvesting in the Vaud region of Switzerland. The aim of this study was to examine cytokine/chemokine responses and innate immune sensing of F. culmorum in bone-marrow-derived dendritic cells and macrophages. Overall, dendritic cells and macrophages responded to F. culmorum spores but not to its secreted components (i.e., mycotoxins) by releasing large amounts of macrophage inflammatory protein (MIP)-1α, MIP-1ß, MIP-2, monocyte chemoattractant protein (MCP)-1, RANTES, and interleukin (IL)-12p40, intermediate amounts of tumor necrosis factor (TNF), IL-6, IL-12p70, IL-33, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein (IP-10), but no detectable amounts of IL-4 and IL-10, a pattern of mediators compatible with generation of Th1 or Th17 antifungal protective immune responses rather than with Th2-dependent allergic responses. The sensing of F. culmorum spores by dendritic cells required dectin-1, the main pattern recognition receptor involved in ß-glucans detection, but likely not MyD88 and TRIF-dependent Toll-like receptors. Taken together, our results indicate that F. culmorum stimulates potently innate immune cells in a dectin-1-dependent manner, suggesting that inhalation of F. culmorum from grain dust may promote immune-related airway diseases in exposed worker populations.


Asunto(s)
Microbiología del Aire , Células Dendríticas/inmunología , Fusarium/fisiología , Inmunidad Innata , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Animales , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/microbiología , Femenino , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Organismos Libres de Patógenos Específicos , Suiza , Triticum
9.
Int J Pharm ; 482(1-2): 61-7, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25448555

RESUMEN

We describe here the establishment and first characterization of a co-culture model of human epithelial sublingual cells (HO-1-u-1 cell line) and human dendritic cells derived from human peripheral blood monocytes (PBMC). Cell culture conditions for HO-1-u-1 cells were optimized. First characterization of phenotypic features by electron microscopy and fluorescence imaging revealed resemblance to sublingual tissue specimen from healthy donors. Successful co-culturing of epithelial and dendritic cells (DCs) was confirmed by confocal laser scanning microscopy. Stimulation of HO-1-u1 cells alone and the epithelial/DC co-culture by incubation with liposomes, virosomes and influenza virus lead reproducibly to the release of inflammatory cytokine GM-CSF. This co-culture model may be suitable for elucidation of mechanisms involved in the immune response at the sublingual epithelium as well as for the evaluation of novel topical vaccines, potentially replacing cumbersome ex vivo and in vivo methods currently in place.


Asunto(s)
Células Dendríticas/citología , Células Dendríticas/inmunología , Células Epiteliales/citología , Células Epiteliales/inmunología , Suelo de la Boca/citología , Suelo de la Boca/inmunología , Línea Celular , Técnicas de Cocultivo , Citocinas/inmunología , Células Dendríticas/ultraestructura , Células Epiteliales/ultraestructura , Humanos , Liposomas , Orthomyxoviridae/inmunología , Virosomas/inmunología
10.
Semin Immunopathol ; 37(2): 83-96, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25502371

RESUMEN

Inhalation of fungal particles is a ubiquitous way of exposure to microorganisms during human life; however, this exposure may promote or exacerbate respiratory diseases only in particular exposure conditions and human genetic background. Depending on the fungal species and form, fungal particles can induce symptoms in the lung by acting as irritants, aeroallergens or pathogens causing infection. Some thermophilic species can even act in all these three ways (e.g. Aspergillus, Penicillium), mesophilic species being only involved in allergic and/or non-allergic airway diseases (e.g. Cladosporium, Alternaria, Fusarium). The goal of the present review is to present the current knowledge on the interaction between airborne fungal particles and the host immune system, to illustrate the differences of immune sensing of different fungal species and to emphasise the importance of conducting research on non-conventional mesophilic fungal species. Indeed, the diversity of fungal species we inhale and the complexity of their composition have a direct impact on fungal particle recognition and immune system decision to tolerate or respond to those particles, eventually leading to collateral damages promoting airway pathologies.


Asunto(s)
Hongos/inmunología , Micosis/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/microbiología , Alérgenos/inmunología , Antígenos Fúngicos/inmunología , Hongos/metabolismo , Predisposición Genética a la Enfermedad , Variación Genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Micosis/genética , Micosis/transmisión , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/transmisión , Factores de Riesgo
11.
Mol Pharm ; 10(5): 1596-609, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23548071

RESUMEN

Mucosal immunization offers the promises of eliciting a systemic and mucosal immune response, as well as enhanced patient compliance. Mucosal vaccination using defined antigens such as proteins and peptides requires delivery systems that combine good safety profiles with strong immunogenicity, which may be provided by virus-like particles (VLP). VLP are assembled from viral structural proteins and thus are devoid of any genetic material. They excel by mimicking natural pathogens, therefore providing antigen-protecting particulate nature, inherent immune-cell stimulatory mechanisms, and tissue-specific targeting depending on their parental virus. Nevertheless, despite of promising preclinical results, VLP remain rarely investigated in clinical studies. This review is intended to give an overview of obstacles and promises of VLP-based mucosal immunization as well as to identify strategies to further improve VLP while maintaining a good safety and tolerability profile.


Asunto(s)
Inmunidad Mucosa , Vacunación/métodos , Vacunas de Partículas Similares a Virus/administración & dosificación , Proteínas Estructurales Virales/administración & dosificación , Proteínas Estructurales Virales/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos , Humanos , Virosomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA