Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Metab Eng ; 82: 1-11, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145749

RESUMEN

Lacto-N-fucopentaose I (LNFP I) is the second most abundant fucosylated human milk oligosaccharide (HMO) in breast milk after 2'-fucosyllactose (2'-FL). Studies have reported that LNFP I exhibits antimicrobial activity against group B Streptococcus and antiviral effects against Enterovirus and Norovirus. Microbial production of HMOs by engineered Escherichia coli is an attractive, low-cost process, but few studies have investigated production of long-chain HMOs, including the pentasaccharide LNFP I. LNFP I is synthesized by α1,2-fucosyltransfer reaction to the N-acetylglucosamine moiety of the lacto-N-tetraose skeleton, which is catalyzed by α1,2-fucosyltransferase (α1,2-FucT). However, α1,2-FucTs competitively transfer fucose to lactose, resulting in formation of the byproduct 2'-FL. In this study, we constructed LNFP I-producing strains of E. coli with various α1,2-fucTs, and observed undesired 2'-FL accumulation during fed-batch fermentation, although, in test tube assays, some strains produced LNFP I without 2'-FL. We hypothesized that promiscuous substrate selectivity of α1,2-FucT was responsible for 2'-FL production. Therefore, to decrease the formation of byproduct 2'-FL, we designed 15 variants of FsFucT from Francisella sp. FSC1006 by rational and semi-rational design approaches. Five of these variants of FsFucT surpassed a twofold reduction in 2'-FL production compared with wild-type FsFucT while maintaining comparable levels of LNFP I production. These designs encompassed substitutions in either a loop region of the enzyme (residues 154-171), or in specific residues (Q7, H162, and L164) that influence substrate binding either directly or indirectly. In particular, the E. coli strain that expressed FsFucT_S3 variants, with a substituted loop region (residues 154-171) forming an α-helix structure, achieved an accumulation of 19.6 g/L of LNFP I and 0.04 g/L of 2'-FL, while the E. coli strain expressing the wild-type FsFucT accumulated 12.2 g/L of LNFP I and 5.85 g/L of 2'-FL during Fed-bach fermentation. Therefore, we have successfully demonstrated the selective and efficient production of the pentasaccharide LNFP I without the byproduct 2'-FL by combining protein engineering of α1,2-FucT designed through in silico structural modeling of an α1,2-FucT and docking simulation with various ligands, with metabolic engineering of the host cell.


Asunto(s)
Escherichia coli , Leche Humana , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Leche Humana/química , Oligosacáridos/química , Oligosacáridos/metabolismo , Fucosiltransferasas/genética
2.
Comput Struct Biotechnol J ; 21: 66-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36514339

RESUMEN

Calculating changes in protein stability (ΔΔG) has been shown to be central for predicting the consequences of single amino acid substitutions in protein engineering as well as interpretation of genomic variants for disease risk. Structure-based calculations are considered most accurate, however the tools used to calculate ΔΔGs have been developed on experimentally resolved structures. Extending those calculations to homology models based on related proteins would greatly extend their applicability as large parts of e.g. the human proteome are not structurally resolved. In this study we aim to investigate the accuracy of ΔΔG values predicted on homology models compared to crystal structures. Specifically, we identified four proteins with a large number of experimentally tested ΔΔGs and templates for homology modeling across a broad range of sequence identities, and selected three methods for ΔΔG calculations to test. We find that ΔΔG-values predicted from homology models compare equally well to experimental ΔΔGs as those predicted on experimentally established crystal structures, as long as the sequence identity of the model template to the target protein is at least 40%. In particular, the Rosetta cartesian_ddg protocol is robust against the small perturbations in the structure which homology modeling introduces. In an independent assessment, we observe a similar trend when using ΔΔGs to categorize variants as low or wild-type-like abundance. Overall, our results show that stability calculations performed on homology models can substitute for those on crystal structures with acceptable accuracy as long as the model is built on a template with sequence identity of at least 40% to the target protein.

3.
Mol Biol Evol ; 38(8): 3235-3246, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33779753

RESUMEN

Understanding and predicting how amino acid substitutions affect proteins are keys to our basic understanding of protein function and evolution. Amino acid changes may affect protein function in a number of ways including direct perturbations of activity or indirect effects on protein folding and stability. We have analyzed 6,749 experimentally determined variant effects from multiplexed assays on abundance and activity in two proteins (NUDT15 and PTEN) to quantify these effects and find that a third of the variants cause loss of function, and about half of loss-of-function variants also have low cellular abundance. We analyze the structural and mechanistic origins of loss of function and use the experimental data to find residues important for enzymatic activity. We performed computational analyses of protein stability and evolutionary conservation and show how we may predict positions where variants cause loss of activity or abundance. In this way, our results link thermodynamic stability and evolutionary conservation to experimental studies of different properties of protein fitness landscapes.


Asunto(s)
Sustitución de Aminoácidos , Fosfohidrolasa PTEN/genética , Estabilidad Proteica , Pirofosfatasas/genética , Relación Estructura-Actividad , Humanos , Fosfohidrolasa PTEN/metabolismo , Pliegue de Proteína , Pirofosfatasas/metabolismo
4.
Anal Chim Acta ; 1075: 91-97, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31196427

RESUMEN

Antioxidants are important to protect and maintain biological barriers, such as the skin. Antioxidant effects are often assessed using clinical trials, however these tests are costly and time consuming. In this work we introduce a skin membrane-covered oxygen electrode (SCOE) as an in vitro tool for monitoring H2O2 and antioxidant reactions in skin. The SCOE gives amperometric response to H2O2 concentrations down to 0.05 mM. More importantly, the electrode allows measurements of polyphenol penetration and reaction with H2O2 in skin. Measurements with SCOE show that lipophilic polyphenols such as quercetin, piceatannol, resveratrol, and plant extract from Plantago major impose their antioxidant effect in skin within 2-20 min. Rutin is however too hydrophilic to penetrate into stratum corneum and therefore cannot deliver its antioxidant effect during similar time interval. The measurements are interpreted considering polyphenol partition-penetration through stratum corneum and the reaction with the H2O2-catalase system in the skin. The contribution of other enzymes will be addressed in the future.


Asunto(s)
Antioxidantes/metabolismo , Peróxido de Hidrógeno/análisis , Inflamación/metabolismo , Polifenoles/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Piel/metabolismo , Animales , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Catalasa/metabolismo , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Peróxido de Hidrógeno/metabolismo , Hidroquinonas/metabolismo , Límite de Detección , Oxígeno/química , Extractos Vegetales/química , Plantago/química , Piel/enzimología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA