Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
iScience ; 27(6): 109930, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38832025

RESUMEN

Historically, cellular models have been used as a tool to study myotonic dystrophy type 1 (DM1) and the validation of therapies in said pathology. However, there is a need for in vitro models that represent the clinical heterogeneity observed in patients with DM1 that is lacking in classical models. In this study, we immortalized three DM1 muscle lines derived from patients with different DM1 subtypes and clinical backgrounds and characterized them at the genetic, epigenetic, and molecular levels. All three cell lines display DM1 hallmarks, such as the accumulation of RNA foci, MBNL1 sequestration, splicing alterations, and reduced fusion. In addition, alterations in early myogenic markers, myotube diameter and CTCF1 DNA methylation were also found in DM1 cells. Notably, the new lines show a high level of heterogeneity in both the size of the CTG expansion and the aforementioned molecular alterations. Importantly, these immortalized cells also responded to previously tested therapeutics. Altogether, our results show that these three human DM1 cellular models are suitable to study the pathophysiological heterogeneity of DM1 and to test future therapeutic options.

2.
Front Cell Dev Biol ; 11: 1128534, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228645

RESUMEN

Aged muscles accumulate satellite cells with a striking decline response to damage. Although intrinsic defects in satellite cells themselves are the major contributors to aging-associated stem cell dysfunction, increasing evidence suggests that changes in the muscle-stem cell local microenvironment also contribute to aging. Here, we demonstrate that loss of the matrix metalloproteinase-10 (MMP-10) in young mice alters the composition of the muscle extracellular matrix (ECM), and specifically disrupts the extracellular matrix of the satellite cell niche. This situation causes premature features of aging in the satellite cells, contributing to their functional decline and a predisposition to enter senescence under proliferative pressure. Similarly, reduction of MMP-10 levels in young satellite cells from wild type animals induces a senescence response, while addition of the protease delays this program. Significantly, the effect of MMP-10 on satellite cell aging can be extended to another context of muscle wasting, muscular dystrophy. Systemic treatment of mdx dystrophic mice with MMP-10 prevents the muscle deterioration phenotype and reduces cellular damage in the satellite cells, which are normally under replicative pressure. Most importantly, MMP-10 conserves its protective effect in the satellite cell-derived myoblasts isolated from a Duchenne muscular dystrophy patient by decreasing the accumulation of damaged DNA. Hence, MMP-10 provides a previously unrecognized therapeutic opportunity to delay satellite cell aging and overcome satellite cell dysfunction in dystrophic muscles.

3.
Biomedicines ; 11(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36830793

RESUMEN

BACKGROUND AND OBJECTIVE: The determination of pharmacokinetic properties of new chemical entities is a key step in the process of drug development. Positron emission tomography (PET) is an ideal technique to obtain both biodistribution and pharmacokinetic parameters of new compounds over a wide range of chemical modalities. Here, we use a multi-radionuclide/multi-position labelling approach to investigate distribution, elimination, and metabolism of a triazole-based FKBP12 ligand (AHK2) with potential application in neuromuscular disorders. METHODS: Target engagement and stabilizing capacity of the drug candidate (AHK2) towards FKBP12-RyR was evaluated using competitive ligand binding and proximity ligation assays, respectively. Subsequently, AHK2 was labelled either with the positron emitter carbon-11 (11C) via 11C-methylation to yield both [11C]AHK2.1 and [11C]AHK2.2, or by palladium-catalysed reduction of the corresponding 5-iodotriazole derivative using 3H gas to yield [3H]AHK2. Metabolism was first investigated in vitro using liver microsomes. PET imaging studies in rats after intravenous (IV) administration at different doses (1 µg/Kg and 5 mg/Kg) were combined with determination of arterial blood time-activity curves (TACs) and analysis of plasma samples by high performance liquid chromatography (HPLC) to quantify radioactive metabolites. Arterial TACs were obtained in continuous mode by using an in-house developed system that enables extracorporeal blood circulation and continuous measurement of radioactivity in the blood. Pharmacokinetic parameters were determined by non-compartmental modelling of the TACs. RESULTS: In vitro studies indicate that AHK2 binds to FKBP12 at the rapamycin-binding pocket, presenting activity as a FKBP12/RyR stabilizer. [11C]AHK2.1, [11C]AHK2.2 and [3H]AHK2 could be obtained in overall non-decay corrected radiochemical yields of 14 ± 2%, 15 ± 2% and 0.05%, respectively. Molar activities were 60-110 GBq/µmol, 68-122 GBq/µmol and 0.4-0.5 GBq/µmol, respectively. In vitro results showed that oxidation of the thioether group into sulfoxide, demethylation of the CH3O-Ar residue and demethylation of -N(CH3)2 were the main metabolic pathways. Fast metabolism was observed in vivo. Pharmacokinetic parameters obtained from metabolite-corrected arterial blood TACs showed a short half-life (12.6 ± 3.3 min). Dynamic PET imaging showed elimination via urine when [11C]AHK2.2 was administered, probably reflecting the biodistribution of [11C]methanol as the major metabolite. Contrarily, accumulation in the gastrointestinal track was observed after administration of [11C]AKH2.1. CONCLUSIONS: AHK2 binds to FKBP12 at the rapamycin-binding pocket, presenting activity as a FKBP12/RyR stabilizer. Studies performed with the 3H- and 11C-labelled FKBP12/RyR stabilizer AHK2 confirm fast blood clearance, linear pharmacokinetics and rapid metabolism involving oxidation of the sulfide and amine moieties and oxidative demethylation of the CH3-O-Ar and tertiary amine groups as the main pathways. PET studies suggest that knowledge about metabolic pathways is paramount to interpret images.

4.
Elife ; 112022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35604384

RESUMEN

Over the last few years, there has been growing interest in measuring the contractile force (CF) of engineered muscle tissues to evaluate their functionality. However, there are still no standards available for selecting the most suitable experimental platform, measuring system, culture protocol, or stimulation patterns. Consequently, the high variability of published data hinders any comparison between different studies. We have identified that cantilever deflection, post deflection, and force transducers are the most commonly used configurations for CF assessment in 2D and 3D models. Additionally, we have discussed the most relevant emerging technologies that would greatly complement CF evaluation with intracellular and localized analysis. This review provides a comprehensive analysis of the most significant advances in CF evaluation and its critical parameters. In order to compare contractile performance across experimental platforms, we have used the specific force (sF, kN/m2), CF normalized to the calculated cross-sectional area (CSA). However, this parameter presents a high variability throughout the different studies, which indicates the need to identify additional parameters and complementary analysis suitable for proper comparison. We propose that future contractility studies in skeletal muscle constructs report detailed information about construct size, contractile area, maturity level, sarcomere length, and, ideally, the tetanus-to-twitch ratio. These studies will hopefully shed light on the relative impact of these variables on muscle force performance of engineered muscle constructs. Prospective advances in muscle tissue engineering, particularly in muscle disease models, will require a joint effort to develop standardized methodologies for assessing CF of engineered muscle tissues.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Estudios Prospectivos , Sarcómeros , Ingeniería de Tejidos/métodos
5.
J Neurosci ; 42(19): 3879-3895, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35387872

RESUMEN

Calcium is an important second messenger regulating a bioenergetic response to the workloads triggered by neuronal activation. In embryonic mouse cortical neurons using glucose as only fuel, activation by NMDA elicits a strong workload (ATP demand)-dependent on Na+ and Ca2+ entry, and stimulates glucose uptake, glycolysis, pyruvate and lactate production, and oxidative phosphorylation (OXPHOS) in a Ca2+-dependent way. We find that Ca2+ upregulation of glycolysis, pyruvate levels, and respiration, but not glucose uptake, all depend on Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier, component of the malate-aspartate shuttle (MAS). MAS activation increases glycolysis, pyruvate production, and respiration, a process inhibited in the presence of BAPTA-AM, suggesting that the Ca2+ binding motifs in Aralar may be involved in the activation. Mitochondrial calcium uniporter (MCU) silencing had no effect, indicating that none of these processes required MCU-dependent mitochondrial Ca2+ uptake. The neuronal respiratory response to carbachol was also dependent on Aralar, but not on MCU. We find that mouse cortical neurons are endowed with a constitutive ER-to-mitochondria Ca2+ flow maintaining basal cell bioenergetics in which ryanodine receptors, RyR2, rather than InsP3R, are responsible for Ca2+ release, and in which MCU does not participate. The results reveal that, in neurons using glucose, MCU does not participate in OXPHOS regulation under basal or stimulated conditions, while Aralar-MAS appears as the major Ca2+-dependent pathway tuning simultaneously glycolysis and OXPHOS to neuronal activation.SIGNIFICANCE STATEMENT Neuronal activation increases cell workload to restore ion gradients altered by activation. Ca2+ is involved in matching increased workload with ATP production, but the mechanisms are still unknown. We find that glycolysis, pyruvate production, and neuronal respiration are stimulated on neuronal activation in a Ca2+-dependent way, independently of effects of Ca2+ as workload inducer. Mitochondrial calcium uniporter (MCU) does not play a relevant role in Ca2+ stimulated pyruvate production and oxygen consumption as both are unchanged in MCU silenced neurons. However, Ca2+ stimulation is blunt in the absence of Aralar, a Ca2+-binding mitochondrial carrier component of Malate-Aspartate Shuttle (MAS). The results suggest that Ca2+-regulated Aralar-MAS activation upregulates glycolysis and pyruvate production, which fuels mitochondrial respiration, through regulation of cytosolic NAD+/NADH ratio.


Asunto(s)
Ácido Aspártico , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Animales , Ácido Aspártico/metabolismo , Calcio/metabolismo , Glucosa/metabolismo , Glucólisis , Malatos/metabolismo , Ratones , Neuronas/fisiología , Piruvatos/metabolismo
6.
Front Cell Dev Biol ; 10: 822563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309930

RESUMEN

LGMDR1 is caused by mutations in the CAPN3 gene that encodes calpain 3 (CAPN3), a non-lysosomal cysteine protease necessary for proper muscle function. Our previous findings show that CAPN3 deficiency leads to reduced SERCA levels through increased protein degradation. This work investigates the potential contribution of the ubiquitin-proteasome pathway to increased SERCA degradation in LGMDR1. Consistent with our previous results, we observed that CAPN3-deficient human myotubes exhibit reduced SERCA protein levels and high cytosolic calcium concentration. Treatment with the proteasome inhibitor bortezomib (Velcade) increased SERCA2 protein levels and normalized intracellular calcium levels in CAPN3-deficient myotubes. Moreover, bortezomib was able to recover mutated CAPN3 protein in a patient carrying R289W and R546L missense mutations. We found that CAPN3 knockout mice (C3KO) presented SERCA deficits in skeletal muscle in the early stages of the disease, prior to the manifestation of muscle deficits. However, treatment with bortezomib (0.8 mg/kg every 72 h) for 3 weeks did not rescue SERCA levels. No change in muscle proteasome activity was observed in bortezomib-treated animals, suggesting that higher bortezomib doses are needed to rescue SERCA levels in this model. Overall, our results lay the foundation for exploring inhibition of the ubiquitin-proteasome as a new therapeutic target to treat LGMDR1 patients. Moreover, patients carrying missense mutations in CAPN3 and presumably other genes may benefit from proteasome inhibition by rescuing mutant protein levels. Further studies in suitable models will be necessary to demonstrate the therapeutic efficacy of proteasome inhibition for different missense mutations.

7.
Macromol Rapid Commun ; 42(12): e2100100, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33938086

RESUMEN

Tailor-made polymers are needed to fully exploit the possibilities of additive manufacturing, constructing complex, and functional devices in areas such as bioelectronics. In this paper, the synthesis of a conducting and biocompatible graft copolymer which can be 3D printed using direct melting extrusion methods is shown. For this purpose, graft copolymers composed by conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and a biocompatible polymer polylactide (PLA) are designed. The PEDOT-g-PLA copolymers are synthesized by chemical oxidative polymerization between 3,4-ethylenedioxythiophene and PLA macromonomers. PEDOT-g-PLA copolymers with different compositions are obtained and fully characterized. The rheological characterization indicates that copolymers containing below 20 wt% of PEDOT show the right complex viscosity values suitable for direct ink writing (DIW). The 3D printing tests using the DIW methodology allows printing different parts with different shapes with high resolution (200 µm). The conductive and biocompatible printed patterns of PEDOT-g-PLA show excellent cell growth and maturation of neonatal cardiac myocytes cocultured with fibroblasts.


Asunto(s)
Tinta , Polímeros , Compuestos Bicíclicos Heterocíclicos con Puentes , Humanos , Recién Nacido , Poliésteres , Escritura
8.
Neuropathol Appl Neurobiol ; 47(6): 711-723, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33999469

RESUMEN

Utrophin is an autosomal paralogue of dystrophin, a protein whose deficit causes Duchenne and Becker muscular dystrophies (DMD/BMD). Utrophin is naturally overexpressed at the sarcolemma of mature dystrophin-deficient fibres in DMD and BMD patients as well as in the mdx Duchenne mouse model. Dystrophin and utrophin can co-localise in human foetal muscle, in the dystrophin-competent fibres from DMD/BMD carriers, and revertant fibre clusters in biopsies from DMD patients. These findings suggest that utrophin overexpression could act as a surrogate, compensating for the lack of dystrophin, and, as such, it could be used in combination with dystrophin restoration therapies. Different strategies to overexpress utrophin are currently under investigation. In recent years, many compounds have been reported to modulate utrophin expression efficiently in preclinical studies and ameliorate the dystrophic phenotype in animal models of the disease. In this manuscript, we discuss the current knowledge on utrophin protein and the different mechanisms that modulate its expression in skeletal muscle. We also include a comprehensive review of compounds proposed as utrophin regulators and, as such, potential therapeutic candidates for these muscular dystrophies.


Asunto(s)
Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Preparaciones Farmacéuticas/metabolismo , Utrofina/uso terapéutico , Animales , Biopsia/métodos , Modelos Animales de Enfermedad , Humanos , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Utrofina/metabolismo
9.
Eur J Med Chem ; 213: 113160, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33493827

RESUMEN

The hypothesis of rescuing FKBP12/RyR1 interaction and intracellular calcium homeostasis through molecular "reshaping" of FKBP12 was investigated. To this end, novel 4-arylthioalkyl-1-carboxyalkyl-1,2,3-triazoles were designed and synthesized, and their efficacy was tested in human myotubes. A library of 17 compounds (10a-n) designed to dock the FKBP12/RyR1 hot-spot interface contact residues, was readily prepared from free α-amino acids and arylthioalkynes using CuAAC "click" protocols amenable to one-pot transformations in high overall yields and total configurational integrity. To model nitro-oxidative stress, human myotubes were treated with the peroxynitrite donor SIN1, and evidence was found that some triazoles 10 were able to normalize calcium levels, as well as FKBP12/RyR1 interaction. For example, compound 10 b at 150 nM rescued 46% of FKBP12/RyR1 interaction and up to 70% of resting cytosolic calcium levels in human myotubes under nitro-oxidative stress. All compounds 10 analyzed showed target engagement to FKBP12 and low levels of cytotoxicity in vitro. Compounds 10b, 10c, 10h, and 10iR were identified as potential therapeutic candidates to protect myotubes in muscle disorders with underlying nitro-oxidative stress, FKBP12/RyR1 dysfunction and calcium dysregulation.


Asunto(s)
Calcio/metabolismo , Descubrimiento de Drogas , Músculo Esquelético/efectos de los fármacos , Proteína 1A de Unión a Tacrolimus/metabolismo , Triazoles/farmacología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Molecular , Músculo Esquelético/metabolismo , Estrés Oxidativo/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Relación Estructura-Actividad , Proteína 1A de Unión a Tacrolimus/química , Triazoles/síntesis química , Triazoles/química
10.
Sci Rep ; 10(1): 17224, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057138

RESUMEN

Dystrophin-null sapje zebrafish is an excellent model for better understanding the pathological mechanisms underlying Duchenne muscular dystrophy, and it has recently arisen as a powerful tool for high-throughput screening of therapeutic candidates for this disease. While dystrophic phenotype in sapje larvae can be easily detected by birefringence, zebrafish genotyping is necessary for drug screening experiments, where the potential rescue of larvae phenotype is the primary outcome. Genotyping is also desirable during colony husbandry since heterozygous progenitors need to be selected. Currently, sapje zebrafish are genotyped through techniques involving sequencing or multi-step PCR, which are often costly, tedious, or require special equipment. Here we report a simple, precise, cost-effective, and versatile PCR genotyping method based on primer competition. Genotypes can be resolved by standard agarose gel electrophoresis and high-resolution melt assay, the latter being especially useful for genotyping a large number of samples. Our approach has shown high sensitivity, specificity, and reproducibility in detecting the A/T point mutation in sapje zebrafish and the C/T mutation in the mdx mouse model of Duchenne. Hence, this method can be applied to other single nucleotide substitutions and may be further optimized to detect small insertions and deletions. Given its robust performance with crude DNA extracts, our strategy may be particularly well-suited for detecting single nucleotide variants in poor-quality samples such as ancient DNA or DNA from formalin-fixed, paraffin-embedded material.


Asunto(s)
Modelos Animales de Enfermedad , Técnicas de Genotipaje/métodos , Técnicas de Diagnóstico Molecular/métodos , Distrofia Muscular de Duchenne/genética , Mutación Puntual , Reacción en Cadena de la Polimerasa/métodos , Animales , Birrefringencia , Evaluación Preclínica de Medicamentos , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Sensibilidad y Especificidad , Pez Cebra
12.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31540302

RESUMEN

Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a rare disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness of shoulder, pelvic, and proximal limb muscles that usually appears in children and young adults and results in loss of ambulation within 20 years after disease onset in most patients. The pathophysiological mechanisms involved in LGMDR1 remain mostly unknown, and to date, there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of Ca2+ homeostasis in the skeletal muscle is a significant underlying event in this muscular dystrophy. We also review and discuss specific clinical features of LGMDR1, CAPN3 functions, novel putative targets for therapeutic strategies, and current approaches aiming to treat LGMDR1. These novel approaches may be clinically relevant not only for LGMDR1 but also for other muscular dystrophies with secondary calpainopathy or with abnormal Ca2+ homeostasis, such as LGMD2B/LGMDR2 or sporadic inclusion body myositis.


Asunto(s)
Calcio/metabolismo , Calpaína/genética , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/metabolismo , Señalización del Calcio , Homeostasis , Humanos , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/genética , Mutación
13.
Expert Rev Mol Med ; 19: e7, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28597807

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a severe neuromuscular disease characterised by a progressive loss of motor neurons that usually results in paralysis and death within 2 to 5 years after disease onset. The pathophysiological mechanisms involved in ALS remain largely unknown and to date there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of copper homeostasis in the central nervous system is a crucial underlying event in motor neuron degeneration and ALS pathophysiology. We also review and discuss novel approaches seeking to target copper delivery to treat ALS. These novel approaches may be clinically relevant not only for ALS but also for other neurological disorders with abnormal copper homeostasis, such as Parkinson's, Huntington's and Prion diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/metabolismo , Cobre/metabolismo , Animales , Transporte Biológico , Sistema Nervioso Central/metabolismo , Homeostasis , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo , Oxidación-Reducción
14.
Biochim Biophys Acta ; 1862(10): 2015-21, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27497833

RESUMEN

In this work we have analyzed the expression levels of the main aquaporins (AQPs) expressed in human lens epithelial cells (HLECs) using 112 samples from patients treated with cataract surgery and 36 samples from individuals treated with refractive surgery, with transparent lenses as controls. Aquaporin-1 (AQP1) is the main AQP, representing 64.1% of total AQPs in HLECs, with aquaporin-5 (AQP5) representing 35.9% in controls. A similar proportion of each AQP in cataract was found. Although no differences were found at the mRNA level compared to controls, a significant 1.65-fold increase (p=0.001) in AQP1protein expression was observed in HLECs from cataract patients, with the highest differences being found for nuclear cataracts (2.1-fold increase; p<0.001). A similar trend was found for AQP5 (1.47-fold increase), although the difference was not significant (p=0.161). Moreover we have shown increased membrane AQP5 protein expression in HLECs of patients with cataracts. No association of AQP1 or AQP5 expression levels with age or sex was observed in either group. Our results suggest regulation of AQP1 and AQP5 at the post-translational level and support previous observations on the implication of AQP1 and 5 in maintenance of lens transparency in animal models. Our results likely reflect a compensatory response of the crystalline lens to delay cataract formation by increasing the water removal rate.


Asunto(s)
Acuaporina 1/biosíntesis , Acuaporina 5/biosíntesis , Catarata/metabolismo , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Cápsula del Cristalino/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Catarata/patología , Células Epiteliales/patología , Femenino , Humanos , Cápsula del Cristalino/patología , Masculino , Persona de Mediana Edad , ARN Mensajero/metabolismo
15.
Expert Rev Mol Med ; 18: e7, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-27055500

RESUMEN

Limb-girdle muscular dystrophy type 2A (LGMD2A) is a form of muscular dystrophy caused by mutations in calpain 3 (CAPN3). Several studies have implicated Ca2+ dysregulation as an underlying event in several muscular dystrophies, including LGMD2A. In this study we used mouse and human myotube cultures, and muscle biopsies in order to determine whether dysfunction of sarco/endoplasmatic Ca2+-ATPase (SERCA) is involved in the pathology of this disease. In CAPN3-deficient myotubes, we found decreased levels of SERCA 1 and 2 proteins, while mRNA levels remained comparable with control myotubes. Also, we found a significant reduction in SERCA function that resulted in impairment of Ca2+ homeostasis, and elevated basal intracellular [Ca2+] in human myotubes. Furthermore, small Ankyrin 1 (sAnk1), a SERCA1-binding protein that is involved in sarcoplasmic reticulum integrity, was also diminished in CAPN3-deficient fibres. Interestingly, SERCA2 protein was patently reduced in muscles from LGMD2A patients, while it was normally expressed in other forms of muscular dystrophy. Thus, analysis of SERCA2 expression may prove useful for diagnostic purposes as a potential indicator of CAPN3 deficiency in muscle biopsies. Altogether, our results indicate that CAPN3 deficiency leads to degradation of SERCA proteins and Ca2+ dysregulation in the skeletal muscle. While further studies are needed in order to elucidate the specific contribution of SERCA towards muscle degeneration in LGMD2A, this study constitutes a reasonable foundation for the development of therapeutic approaches targeting SERCA1, SERCA2 or sAnk1.


Asunto(s)
Calcio/metabolismo , Calpaína/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Adolescente , Adulto , Animales , Ancirinas/genética , Ancirinas/metabolismo , Calpaína/deficiencia , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/deficiencia , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Mutación , Cultivo Primario de Células , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal
16.
Stem Cell Reports ; 3(5): 774-88, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25418723

RESUMEN

Resident neural precursor cells (NPCs) have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR(+) precursors of human foreskin can be ascribed to the Schwann (CD56(+)) and perivascular (CD56(-)) cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR(+)CD56(+) Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread.


Asunto(s)
Linaje de la Célula , Dermis/citología , Células-Madre Neurales/citología , Células de Schwann/citología , Adolescente , Adulto , Anciano , Animales , Antígeno CD56/genética , Antígeno CD56/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Niño , Preescolar , Dermis/metabolismo , Prepucio/citología , Perfilación de la Expresión Génica , Humanos , Lactante , Masculino , Ratones , Microscopía Confocal , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células de Schwann/metabolismo , Adulto Joven
17.
Expert Rev Mol Med ; 16: e16, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25293420

RESUMEN

Muscular dystrophies are a group of diseases characterised by the primary wasting of skeletal muscle, which compromises patient mobility and in the most severe cases originate a complete paralysis and premature death. Existing evidence implicates calcium dysregulation as an underlying crucial event in the pathophysiology of several muscular dystrophies, such as dystrophinopathies, calpainopathies or myotonic dystrophy among others. Duchenne muscular dystrophy is the most frequent myopathy in childhood, and calpainopathy or LGMD2A is the most common form of limb-girdle muscular dystrophy, whereas myotonic dystrophy is the most frequent inherited muscle disease worldwide. In this review, we summarise recent advances in our understanding of calcium ion cycling through the sarcolemma, the sarcoplasmic reticulum and mitochondria, and its involvement in the pathogenesis of these dystrophies. We also discuss some of the clinical implications of recent findings regarding Ca2+ handling as well as novel approaches to treat muscular dystrophies targeting Ca2+ regulatory proteins.


Asunto(s)
Calcio/metabolismo , Distrofia Muscular de Cinturas/patología , Distrofia Muscular de Duchenne/patología , Señalización del Calcio , Humanos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Sarcolema/metabolismo , Sarcolema/patología
18.
Dis Model Mech ; 6(5): 1205-12, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23744273

RESUMEN

Neural crest cells (NCCs) participate in the remodeling of the cardiac outflow tract and pharyngeal arch arteries during cardiovascular development. Integrin-linked kinase (ILK) is a serine/threonine kinase and a major regulator of integrin signaling. It links integrins to the actin cytoskeleton and recruits other adaptor molecules into a large complex to regulate actin dynamics and integrin function. Using the Cre-lox system, we deleted Ilk from NCCs of mice to investigate its role in NCC morphogenesis. The resulting mutants developed a severe aneurysmal arterial trunk that resulted in embryonic lethality during late gestation. Ilk mutants showed normal cardiac NCC migration but reduced differentiation into smooth muscle within the aortic arch arteries and the outflow tract. Within the conotruncal cushions, Ilk-deficient NCCs exhibited disorganization of F-actin stress fibers and a significantly rounder morphology, with shorter cellular projections. Additionally, absence of ILK resulted in reduced in vivo phosphorylation of Smad3 in NCCs, which correlated with reduced αSMA levels. Our findings resemble those seen in Pinch1 and ß1 integrin conditional mutant mice, and therefore support that, in neural crest-derived cells, ILK and Pinch1 act as cytoplasmic effectors of ß1 integrin in a pathway that protects against aneurysms. In addition, our conditional Ilk mutant mice might prove useful as a model to study aortic aneurysms caused by reduced Smad3 signaling, as occurs in the newly described aneurysms-osteoarthritis syndrome, for example.


Asunto(s)
Aneurisma de la Aorta/enzimología , Aneurisma de la Aorta/patología , Pérdida del Embrión/enzimología , Eliminación de Gen , Cresta Neural/enzimología , Cresta Neural/patología , Proteínas Serina-Treonina Quinasas/deficiencia , Citoesqueleto de Actina/metabolismo , Animales , Aorta Torácica/anomalías , Aorta Torácica/embriología , Aorta Torácica/patología , Anomalías Cardiovasculares/embriología , Anomalías Cardiovasculares/patología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/patología , Pérdida del Embrión/patología , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/patología , Integrasas/metabolismo , Ratones , Ratones Mutantes , Morfogénesis , Especificidad de Órganos , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
19.
Electrophoresis ; 34(8): 1148-50, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23400834

RESUMEN

We have developed a simple and inexpensive method that improves sensitivity of protein and antigen detection in standard PAGE procedures. Our technique uses a sample microloader device with a funnel-like structure, filled with a 4% stacking gel. When attach to the top of a polyacrylamide slab gel, the proteins in a sample are concentrated by electrophoresis into a small volume as they emerge from the device's narrow outlet. Our microloader has several advantages over previous devices, including simple assembly, high versatility, and absence of cross-contamination between lanes. Addition of this device to a slab gel results in a fivefold increase in the sensitivity of antigen detection in a Western blot. As a result, less protein is required for loading and signal detection. Our protocol is a straightforward modification of a standard experimental technique, and is especially useful when only limited sample quantities are available.


Asunto(s)
Western Blotting/métodos , Electroforesis en Gel de Poliacrilamida/instrumentación , Electroforesis en Gel de Poliacrilamida/métodos , Proteínas/análisis , Proteínas/química , Sensibilidad y Especificidad
20.
J Clin Invest ; 119(8): 2218-30, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19587446

RESUMEN

Neural crest cells (NCCs) participate in the remodeling of the cardiac outflow tract and pharyngeal arch arteries during cardiovascular development. Focal adhesion kinase (FAK) mediates signal transduction by integrin and growth factor receptors, each of which is important for normal cardiovascular development. To investigate the role of FAK in NCC morphogenesis, we deleted it in murine NCCs using Wnt1cre, yielding craniofacial and cardiovascular malformations resembling those observed in individuals with DiGeorge syndrome. In these mice, we observed normal cardiac NCC migration but reduced differentiation into smooth muscle within the aortic arch arteries and impaired cardiac outflow tract rotation, which resulted in a dextroposed aortic root. Moreover, within the conotruncal cushions, Fak-deficient NCCs formed a less organized mesenchyme, with reduced expression of perlecan and semaphorin 3C, and exhibited disorganized F-actin stress fibers within the aorticopulmonary septum. Additionally, absence of Fak resulted in reduced in vivo phosphorylation of Crkl and Erk1/2, components of a signaling pathway essential for NCC development. Consistent with this, both TGF-beta and FGF induced FAK and Crkl phosphorylation in control but not Fak-deficient NCCs in vitro. Our results indicate that FAK plays an essential role in cardiac outflow tract development by promoting the activation of molecules such as Crkl and Erk1/2.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Corazón/embriología , Morfogénesis , Cresta Neural/embriología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Anomalías Craneofaciales/etiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Cardiopatías Congénitas/etiología , Integrina beta1/fisiología , Ratones , Mutación , Cresta Neural/citología , Proteínas Nucleares/metabolismo , Fosforilación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA