Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 51(7): 3130-3149, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36772830

RESUMEN

In mammals, many germline genes are epigenetically repressed to prevent their illegitimate expression in somatic cells. To advance our understanding of the mechanisms restricting the expression of germline genes, we analyzed their chromatin signature and performed a CRISPR-Cas9 knock-out screen for genes involved in germline gene repression using a Dazl-GFP reporter system in mouse embryonic stem cells (mESCs). We show that the repression of germline genes mainly depends on the polycomb complex PRC1.6 and DNA methylation, which function additively in mESCs. Furthermore, we validated novel genes involved in the repression of germline genes and characterized three of them: Usp7, Shfm1 (also known as Sem1) and Erh. Inactivation of Usp7, Shfm1 or Erh led to the upregulation of germline genes, as well as retrotransposons for Shfm1, in mESCs. Mechanistically, USP7 interacts with PRC1.6 components, promotes PRC1.6 stability and presence at germline genes, and facilitates DNA methylation deposition at germline gene promoters for long term repression. Our study provides a global view of the mechanisms and novel factors required for silencing germline genes in embryonic stem cells.


Asunto(s)
Células Madre Embrionarias de Ratones , Animales , Ratones , Silenciador del Gen , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Peptidasa Específica de Ubiquitina 7/genética
2.
Nat Commun ; 12(1): 3582, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117224

RESUMEN

In mouse development, long-term silencing by CpG island DNA methylation is specifically targeted to germline genes; however, the molecular mechanisms of this specificity remain unclear. Here, we demonstrate that the transcription factor E2F6, a member of the polycomb repressive complex 1.6 (PRC1.6), is critical to target and initiate epigenetic silencing at germline genes in early embryogenesis. Genome-wide, E2F6 binds preferentially to CpG islands in embryonic cells. E2F6 cooperates with MGA to silence a subgroup of germline genes in mouse embryonic stem cells and in embryos, a function that critically depends on the E2F6 marked box domain. Inactivation of E2f6 leads to a failure to deposit CpG island DNA methylation at these genes during implantation. Furthermore, E2F6 is required to initiate epigenetic silencing in early embryonic cells but becomes dispensable for the maintenance in differentiated cells. Our findings elucidate the mechanisms of epigenetic targeting of germline genes and provide a paradigm for how transient repression signals by DNA-binding factors in early embryonic cells are translated into long-term epigenetic silencing during mouse development.


Asunto(s)
Islas de CpG/genética , Factor de Transcripción E2F6/genética , Factor de Transcripción E2F6/metabolismo , Desarrollo Embrionario/genética , Epigénesis Genética , Células Germinativas/metabolismo , Animales , Sitios de Unión , Sistemas CRISPR-Cas , Diferenciación Celular , Metilación de ADN , Silenciador del Gen , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones , Complejo Represivo Polycomb 1/metabolismo , ARN Interferente Pequeño
3.
Nat Commun ; 11(1): 3153, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561758

RESUMEN

Mouse embryos acquire global DNA methylation of their genome during implantation. However the exact roles of DNA methyltransferases (DNMTs) in embryos have not been studied comprehensively. Here we systematically analyze the consequences of genetic inactivation of Dnmt1, Dnmt3a and Dnmt3b on the methylome and transcriptome of mouse embryos. We find a strict division of function between DNMT1, responsible for maintenance methylation, and DNMT3A/B, solely responsible for methylation acquisition in development. By analyzing severely hypomethylated embryos, we uncover multiple functions of DNA methylation that is used as a mechanism of repression for a panel of genes including not only imprinted and germline genes, but also lineage-committed genes and 2-cell genes. DNA methylation also suppresses multiple retrotransposons and illegitimate transcripts from cryptic promoters in transposons and gene bodies. Our work provides a thorough analysis of the roles of DNA methyltransferases and the importance of DNA methylation for transcriptome integrity in mammalian embryos.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Desarrollo Embrionario/genética , Animales , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Metilación de ADN/fisiología , Embrión de Mamíferos/metabolismo , Epigenómica , Regulación de la Expresión Génica , Genoma , Ratones , Transcriptoma , ADN Metiltransferasa 3B
4.
Genome Res ; 26(2): 192-202, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26576615

RESUMEN

The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2(-/-) embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development.


Asunto(s)
Metilación de ADN , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/fisiología , Sistema de Transporte de Aminoácidos A/genética , Animales , Células Cultivadas , Embrión de Mamíferos/metabolismo , Femenino , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones/fisiología , Análisis de Secuencia de ADN
5.
PLoS One ; 8(12): e81175, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324673

RESUMEN

BACKGROUND: Adipocyte renewal from preadipocytes occurs throughout the lifetime and contributes to obesity. To date, little is known about the mechanisms that control preadipocyte proliferation and differentiation. Prokineticin-2 is an angiogenic and anorexigenic hormone that activate two G protein-coupled receptors (GPCRs): PKR1 and PKR2. Prokineticin-2 regulates food intake and energy metabolism via central mechanisms (PKR2). The peripheral effect of prokineticin-2 on adipocytes/preadipocytes has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS: Since adipocytes and preadipocytes express mainly prokineticin receptor-1 (PKR1), here, we explored the role of PKR1 in adipose tissue expansion, generating PKR1-null (PKR1(-/-)) and adipocyte-specific (PKR1(ad-/-)) mutant mice, and using murine and human preadipocyte cell lines. Both PKR1(-/-) and PKR1(ad-/-) had excessive abdominal adipose tissue, but only PKR1(-/-) mice showed severe obesity and diabetes-like syndrome. PKR1(ad-/-)) mice had increased proliferating preadipocytes and newly formed adipocyte levels, leading to expansion of adipose tissue. Using PKR1-knockdown in 3T3-L1 preadipocytes, we show that PKR1 directly inhibits preadipocyte proliferation and differentiation. These PKR1 cell autonomous actions appear targeted at preadipocyte cell cycle regulatory pathways, through reducing cyclin D, E, cdk2, c-Myc levels. CONCLUSIONS/SIGNIFICANCE: These results suggest PKR1 to be a crucial player in the preadipocyte proliferation and differentiation. Our data should facilitate studies of both the pathogenesis and therapy of obesity in humans.


Asunto(s)
Adipocitos/metabolismo , Adipocitos/patología , Diferenciación Celular , Obesidad/patología , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3-L1 , Grasa Abdominal/patología , Adipogénesis , Animales , Proliferación Celular , Diabetes Mellitus/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Org Biomol Chem ; 10(34): 6914-29, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22814352

RESUMEN

Silicon chemistry offers the potential to tune the effects of biologically active organic molecules. Subtle changes in the molecular backbone caused by the exchange of a carbon atom for a silicon atom (sila-substitution) can significantly alter the biological properties. In this study, the biological effects of a two-fold sila-substitution in the synthetic retinoids EC23 (4-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)benzoic acid (4a)) and TTNN (6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-2-naphthoic acid (7a)) as well as their corresponding analogues with an indane instead of a 1,2,3,4-tetrahydronaphthalene skeleton (compounds 5a and 8a) were investigated. Two-fold C/Si exchange in 4a, 5a, 7a and 8a leads to the silicon-analogues disila-EC23 (4b), 5b, disila-TTNN (7b) and 8b, which contain a 1,2,3,4-tetrahydro-1,4-disilanaphthalene (4b, 7b) or 1,3-disilaindane skeleton (5b, 8b). Exchange of the SiCH(2)Si moiety of 5b for an SiOSi fragment leads to the disiloxane 6 (2-oxa-1,3-disilaindane skeleton). The EC23 derivative 5a, the TTNN derivative 8a and the silicon-containing analogues 4b, 5b, 6, 7b and 8b were synthesised, and the biological properties of the C/Si pairs 4a/4b, 5a/5b, 7a/7b and 8a/8b and compound 6 were evaluated in vivo using RAR isotype-selective reporter cells. EC23 (4a) and its derivatives disila-EC23 (4b), 5a, 5b and 6 are very potent RAR agonists, which are even more potent than the powerful reference compound TTNPB. Disila-substitution of EC23 (4a) and 5a leads to a moderate decrease in RARα activation, whereas the RARß,γ activation is almost not affected. In contrast, two-fold C/Si exchange in the weak retinoid agonist TTNN (7a) and 8a resulted in considerably different effects: a significant increase (7a→7b) and almost no change (8a→8b) in transcription activation potential for all three RAR isotypes. Disila-TTNN (7b) can be regarded as a powerful RARß,γ-selective retinoid.


Asunto(s)
Benzoatos/síntesis química , Benzoatos/farmacología , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/farmacología , Naftalenos/síntesis química , Naftalenos/farmacología , Compuestos de Organosilicio/síntesis química , Compuestos de Organosilicio/farmacología , Retinoides/síntesis química , Retinoides/farmacología , Silicio/química , Tetrahidronaftalenos/síntesis química , Tetrahidronaftalenos/farmacología , Benzoatos/química , Ácidos Carboxílicos/química , Técnicas de Química Sintética , Células HeLa , Humanos , Modelos Moleculares , Conformación Molecular , Naftalenos/química , Compuestos de Organosilicio/química , Retinoides/química , Tetrahidronaftalenos/química , Activación Transcripcional/efectos de los fármacos
7.
Int J Dev Biol ; 54(6-7): 1061-5, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20711983

RESUMEN

Hematopoietic stem cells (HSC) are at the origin of the adult hematopoietic system. They give rise to all blood cells through a complex series of proliferation and differentiation events that occur throughout the lifespan of the individual. Because of their potential clinical importance in transplantation, recent research has focused on the developmental origins of embryonic HSC. During development in vertebrate embryos, two independent anatomical sites generate hematopoietic cells. The yolk sac is responsible for a first ephemeral hematopoiesis, characterized by the early appearance of hematopoietic progenitors with limited development ability that rapidly differentiate toward erythro-myeloid lineages. Self-renewing, multipotent adult-type HSC that also exhibit B and T lymphoid potentials emerge autonomously in the aorta/gonad/mesonephros (AGM) region inside the embryo. In this review, we provide a brief summary of recent developments regarding the origins of hematopoietic stem cells in the early human embryo. The recent discovery that angiotensin-converting enzyme (ACE) is a novel cell surface marker of human HSC is discussed in detail.


Asunto(s)
Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/citología , Sistema Hematopoyético/embriología , Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Peptidil-Dipeptidasa A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA