Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Acta Biomater ; 180: 104-114, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583750

RESUMEN

In the field of orthopedic surgery, there is an increasing need for the development of bone replacement materials for the treatment of bone defects. One of the main focuses of biomaterials engineering are advanced bioceramics like mesoporous bioactive glasses (MBG´s). The present study compared the new bone formation after 12 weeks of implantation of MBG scaffolds with composition 82,5SiO2-10CaO-5P2O5-x 2.5SrO alone (MBGA), enriched with osteostatin, an osteoinductive peptide, (MBGO) or enriched with bone marrow aspirate (MBGB) in a long bone critical defect in radius bone of adult New Zealand rabbits. New bone formation from the MBG scaffold groups was compared to the gold standard defect filled with iliac crest autograft and to the unfilled defect. Radiographic follow-up was performed at 2, 6, and 12 weeks, and microCT and histologic examination were performed at 12 weeks. X-Ray study showed the highest bone formation scores in the group with the defect filled with autograft, followed by the MBGB group, in addition, the microCT study showed that bone within defect scores (BV/TV) were higher in the MBGO group. This difference could be explained by the higher density of newly formed bone in the osteostatin enriched MBG scaffold group. Therefore, MBG scaffold alone and enriched with osteostatin or bone marrow aspirate increase bone formation compared to defect unfilled, being higher in the osteostatin group. The present results showed the potential to treat critical bone defects by combining MBGs with osteogenic peptides such as osteostatin, with good prospects for translation into clinical practice. STATEMENT OF SIGNIFICANCE: Treatment of bone defects without the capacity for self-repair is a global problem in the field of Orthopedic Surgery, as evidenced by the fact that in the U.S alone it affects approximately 100,000 patients per year. The gold standard of treatment in these cases is the autograft, but its use has limitations both in the amount of graft to be obtained and in the morbidity produced in the donor site. In the field of materials engineering, there is a growing interest in the development of a bone substitute equivalent. Mesoporous bioactive glass (MBG´s) scaffolds with three-dimensional architecture have shown great potential for use as a bone substitutes. The osteostatin-enriched Sr-MBG used in this long bone defect in rabbit radius bone in vivo study showed an increase in bone formation close to autograft, which makes us think that it may be an option to consider as bone substitute.


Asunto(s)
Sustitutos de Huesos , Vidrio , Andamios del Tejido , Animales , Conejos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Andamios del Tejido/química , Vidrio/química , Porosidad , Diáfisis/patología , Diáfisis/diagnóstico por imagen , Diáfisis/efectos de los fármacos , Microtomografía por Rayos X , Osteogénesis/efectos de los fármacos , Cerámica/química , Cerámica/farmacología , Masculino , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Regeneración Ósea/efectos de los fármacos , Fragmentos de Péptidos
2.
J Colloid Interface Sci ; 664: 454-468, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484514

RESUMEN

Nowadays, diseases associated with an ageing population, such as osteoporosis, require the development of new biomedical approaches to bone regeneration. In this regard, mechanotransduction has emerged as a discipline within the field of bone tissue engineering. Herein, we have tested the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs), obtained by the thermal decomposition method, with an average size of 13 nm, when exposed to the application of an external magnetic field for mechanotransduction in human bone marrow-derived mesenchymal stem cells (hBM-MSCs). The SPIONs were functionalized with an Arg-Gly-Asp (RGD) peptide as ligand to target integrin receptors on cell membrane and used in colloidal state. Then, a comprehensive and comparative bioanalytical characterization of non-targeted versus targeted SPIONs was performed in terms of biocompatibility, cell uptake pathways and mechanotransduction effect, demonstrating the osteogenic differentiation of hBM-MSCs. A key conclusion derived from this research is that when the magnetic stimulus is applied in the first 30 min of the in vitro assay, i.e., when the nanoparticles come into contact with the cell membrane surface to initiate endocytic pathways, a successful mechanotransduction effect is observed. Thus, under the application of a magnetic field, there was a significant increase in runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) gene expression as well as ALP activity, when cells were exposed to RGD-functionalized SPIONs, demonstrating osteogenic differentiation. These findings open new expectations for the use of remotely activated mechanotransduction using targeted magnetic colloidal nanoformulations for osteogenic differentiation by drug-free cell therapy using minimally invasive techniques in cases of bone loss.


Asunto(s)
Mecanotransducción Celular , Osteogénesis , Humanos , Diferenciación Celular , Campos Magnéticos , Oligopéptidos/farmacología , Células Cultivadas
3.
Int J Pharm ; 655: 124023, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38513815

RESUMEN

This study delves into the biomolecular mechanisms underlying the antitumoral efficacy of a hybrid nanosystem, comprised of a silver core@shell (Ag@MSNs) functionalized with transferrin (Tf). Employing a SILAC proteomics strategy, we identified over 150 de-regulated proteins following exposure to the nanosystem. These proteins play pivotal roles in diverse cellular processes, including mitochondrial fission, calcium homeostasis, endoplasmic reticulum (ER) stress, oxidative stress response, migration, invasion, protein synthesis, RNA maturation, chemoresistance, and cellular proliferation. Rigorous validation of key findings substantiates that the nanosystem elicits its antitumoral effects by activating mitochondrial fission, leading to disruptions in calcium homeostasis, as corroborated by RT-qPCR and flow cytometry analyses. Additionally, induction of ER stress was validated through western blotting of ER stress markers. The cytotoxic action of the nanosystem was further affirmed through the generation of cytosolic and mitochondrial reactive oxygen species (ROS). Finally, in vivo experiments using a chicken embryo model not only confirmed the antitumoral capacity of the nanosystem, but also demonstrated its efficacy in reducing cellular proliferation. These comprehensive findings endorse the potential of the designed Ag@MSNs-Tf nanosystem as a groundbreaking chemotherapeutic agent, shedding light on its multifaceted mechanisms and in vivo applicability.


Asunto(s)
Antineoplásicos , Plata , Embrión de Pollo , Animales , Plata/farmacología , Plata/metabolismo , Calcio/metabolismo , Apoptosis , Antineoplásicos/farmacología , Estrés del Retículo Endoplásmico , Especies Reactivas de Oxígeno/metabolismo , Transferrina
4.
Biomolecules ; 14(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38397380

RESUMEN

Mesoporous bioactive glasses (MBGs) of the SiO2-CaO-P2O5 system are biocompatible materials with a quick and effective in vitro and in vivo bioactive response. MBGs can be enhanced by including therapeutically active ions in their composition, by hosting osteogenic molecules within their mesopores, or by decorating their surfaces with mesenchymal stem cells (MSCs). In previous studies, our group showed that MBGs, ZnO-enriched and loaded with the osteogenic peptide osteostatin (OST), and MSCs exhibited osteogenic features under in vitro conditions. The aim of the present study was to evaluate bone repair capability after large bone defect treatment in distal femur osteoporotic rabbits using MBGs (76%SiO2-15%CaO-5%P2O5-4%ZnO (mol-%)) before and after loading with OST and MSCs from a donor rabbit. MSCs presence and/or OST in scaffolds significantly improved bone repair capacity at 6 and 12 weeks, as confirmed by variations observed in trabecular and cortical bone parameters obtained by micro-CT as well as histological analysis results. A greater effect was observed when OST and MSCs were combined. These findings may indicate the great potential for treating critical bone defects by combining MBGs with MSCs and osteogenic peptides such as OST, with good prospects for translation to clinical practice.


Asunto(s)
Células Madre Mesenquimatosas , Proteína Relacionada con la Hormona Paratiroidea , Fragmentos de Péptidos , Óxido de Zinc , Animales , Conejos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Dióxido de Silicio , Regeneración Ósea , Diferenciación Celular
5.
Biomolecules ; 13(12)2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38136635

RESUMEN

The increasing interest in innovative solutions for addressing bone defects has driven research into the use of Bioactive Mesoporous Glasses (MBGs). These materials, distinguished by their well-ordered mesoporous structure, possess the capability to accommodate plant extracts with well-established osteogenic properties, including bovine lactoferrin (bLF), as part of their 3D scaffold composition. This harmonizes seamlessly with the ongoing advancements in the field of biomedicine. In this study, we fabricated 3D scaffolds utilizing MBGs loaded with extracts from parsley leaves (PL) and embryogenic cultures (EC), rich in bioactive compounds such as apigenin and kaempferol, which hold potential benefits for bone metabolism. Gelatin Methacryloyl (GelMa) served as the polymer, and bLF was included in the formulation. Cytocompatibility, Runx2 gene expression, ALP enzyme activity, and biomineralization were assessed in preosteoblastic MC3T3-E1 cell cultures. MBGs effectively integrated PL and EC extracts with loadings between 22.6 ± 0.1 and 43.6 ± 0.3 µM for PL and 26.3 ± 0.3 and 46.8 ± 0.4 µM for EC, ensuring cell viability through a release percentage between 28.3% and 59.9%. The incorporation of bLF in the 3D scaffold formulation showed significant differences compared to the control in all assays, even at concentrations below 0.2 µM. Combinations, especially PL + bLF at 0.19 µM, demonstrated additive potential, with superior biomineralization compared to EC. In summary, this study highlights the effectiveness of MBGs in incorporating PL and EC extracts, along with bLF, into 3D scaffolds. The results underscore cytocompatibility, osteogenic activity, and biomineralization, offering exciting potential for future in vivo applications.


Asunto(s)
Lactoferrina , Petroselinum , Lactoferrina/farmacología , Lactoferrina/metabolismo , Osteoblastos/metabolismo , Técnicas de Cultivo de Célula
6.
Mater Today Bio ; 23: 100850, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38024844

RESUMEN

In recent years, there has been a breakthrough in the integration of artificial nanoplatforms with natural biomaterials for the development of more efficient drug delivery systems. The formulation of bioinspired nanosystems, combining the benefits of synthetic nanoparticles with the natural features of biological materials, provides an efficient strategy to improve nanoparticle circulation time, biocompatibility and specificity toward targeted tissues. Among others biological materials, extracellular vesicles (EVs), membranous structures secreted by many types of cells composed by a protein rich lipid bilayer, have shown a great potential as drug delivery systems themselves and in combination with artificial nanoparticles. The reason for such interest relays on their natural properties, such as overcoming several biological barriers or migration towards specific tissues. Here, we propose the use of mesoporous silica nanoparticles (MSNs) as efficient and versatile nanocarriers in combination with tumor derived extracellular vesicles (EVs) for the development of selective drug delivery systems. The hybrid nanosystems demonstrated selective cellular internalization in parent cells, indicating that the EV targeting capabilities were efficiently transferred to MSNs by the developed coating strategy. As a result, EVs-coated MSNs provided an enhanced and selective intracellular accumulation of doxorubicin and a specific cytotoxic activity against targeted cancer cells, revealing these hybrid nanosystems as promising candidates for the development of targeted treatments.

7.
Chem Mater ; 35(21): 8788-8805, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38027542

RESUMEN

Bacterial antimicrobial resistance is posed to become a major hazard to global health in the 21st century. An aggravating issue is the stalled antibiotic research pipeline, which requires the development of new therapeutic strategies to combat antibiotic-resistant infections. Nanotechnology has entered into this scenario bringing up the opportunity to use nanocarriers capable of transporting and delivering antimicrobials to the target site, overcoming bacterial resistant barriers. Among them, mesoporous silica nanoparticles (MSNs) are receiving growing attention due to their unique features, including large drug loading capacity, biocompatibility, tunable pore sizes and volumes, and functionalizable silanol-rich surface. This perspective article outlines the recent research advances in the design and development of organically modified MSNs to fight bacterial infections. First, a brief introduction to the different mechanisms of bacterial resistance is presented. Then, we review the recent scientific approaches to engineer multifunctional MSNs conceived as an assembly of inorganic and organic building blocks, against bacterial resistance. These elements include specific ligands to target planktonic bacteria, intracellular bacteria, or bacterial biofilm; stimuli-responsive entities to prevent antimicrobial cargo release before arriving at the target; imaging agents for diagnosis; additional constituents for synergistic combination antimicrobial therapies; and aims to improve the therapeutic outcomes. Finally, this manuscript addresses the current challenges and future perspectives on this hot research area.

8.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570501

RESUMEN

Bioactive mesoporous glass nanospheres (nanoMBGs) charged with antiosteoporotic drugs have great potential for the treatment of osteoporosis and fracture prevention. In this scenario, cells of the immune system are essential both in the development of disease and in their potential to stimulate therapeutic effects. In the present work, we hypothesize that nanoMBGs loaded with ipriflavone can exert a positive osteoimmune effect. With this objective, we assessed the effects of non-loaded and ipriflavone-loaded nanoparticles (nanoMBGs and nanoMBG-IPs, respectively) on CD4+ Th2 lymphocytes because this kind of cell is implicated in the inhibition of osseous loss by reducing the RANKL/OPG relationship through the secretion of cytokines. The results indicate that nanoMBGs enter efficiently in CD4+ Th2 lymphocytes, mainly through phagocytosis and clathrin-dependent mechanisms, without affecting the function of these T cells or inducing inflammatory mediators or oxidative stress, thus maintaining the reparative Th2 phenotype. Furthermore, the incorporation of the anti-osteoporotic drug ipriflavone reduces the potential unwanted inflammatory response by decreasing the presence of ROS and stimulating intracellular anti-inflammatory cytokine release like IL-4. These results evidenced that nanoMBG loaded with ipriflavone exerts a positive osteoimmune effect.

9.
J Colloid Interface Sci ; 650(Pt A): 560-572, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429163

RESUMEN

Despite the large number of synthesis methodologies described for superparamagnetic iron oxide nanoparticles (SPIONs), the search for their large-scale production for their widespread use in biomedical applications remains a mayor challenge. Flame Spray Pyrolysis (FSP) could be the solution to solve this limitation, since it allows the fabrication of metal oxide nanoparticles with high production yield and low manufacture costs. However, to our knowledge, to date such fabrication method has not been upgraded for biomedical purposes. Herein, SPIONs have been fabricated by FSP and their surface has been treated to be subsequently coated with dimercaptosuccinic acid (DMSA) to enhance their colloidal stability in aqueous media. The final material presents high quality in terms of nanoparticle size, homogeneous size distribution, long-term colloidal stability and magnetic properties. A thorough in vitro validation has been performed with peripheral blood cells and mesenchymal stem cells (hBM-MSCs). Specifically, hemocompatibility studies show that these functionalized FSP-SPIONs-DMSA nanoparticles do not cause platelet aggregation or impair basal monocyte function. Moreover, in vitro biocompatibility assays show a dose-dependent cellular uptake while maintaining high cell viability values and cell cycle progression without causing cellular oxidative stress. Taken together, the results suggest that the FSP-SPIONs-DMSA optimized in this work could be a worthy alternative with the benefit of a large-scale production aimed at industrialization for biomedical applications.


Asunto(s)
Nanopartículas de Magnetita , Pirólisis , Nanopartículas Magnéticas de Óxido de Hierro , Estrés Oxidativo , Succímero
10.
Nanomaterials (Basel) ; 13(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37368258

RESUMEN

Vaccines represent one of the most significant advancements in public health since they prevented morbidity and mortality in millions of people every year. Conventionally, vaccine technology focused on either live attenuated or inactivated vaccines. However, the application of nanotechnology to vaccine development revolutionized the field. Nanoparticles emerged in both academia and the pharmaceutical industry as promising vectors to develop future vaccines. Regardless of the striking development of nanoparticles vaccines research and the variety of conceptually and structurally different formulations proposed, only a few of them advanced to clinical investigation and usage in the clinic so far. This review covered some of the most important developments of nanotechnology applied to vaccine technologies in the last few years, focusing on the successful race for the preparation of lipid nanoparticles employed in the successful anti-SARS-CoV-2 vaccines.

11.
Gels ; 9(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37232995

RESUMEN

The production of customized polymeric hydrogels in the form of 3D scaffolds with application in bone tissue engineering is currently a topic of great interest. Based on gelatin methacryloyl (GelMa) as one of the most popular used biomaterials, GelMa with two different methacryloylation degrees (DM) was obtained, to achieve crosslinked polymer networks by photoinitiated radical polymerization. In this work, we present the obtention of new 3D foamed scaffolds based on ternary copolymers of GelMa with vinylpyrrolidone (VP) and 2-hydroxyethylmethacrylate (HEMA). All biopolymers obtained in this work were characterized by infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), whose results confirm the presence of all copolymers in the crosslinked biomaterial. In addition, scanning electron microscopy (SEM) pictures were obtained verifying the presence of the porosity created by freeze-drying process. In addition, the variation in its swelling degree and its enzymatic degradation in vitro was analyzed as a function of the different copolymers obtained. This has allowed us to observe good control of the variation in these properties described above in a simple way by varying the composition of the different comonomers used. Finally, with these concepts in mind, biopolymers obtained were tested through assessment of several biological parameters such as cell viability and differentiation with MC3T3-E1 pre-osteoblastic cell line. Results obtained show that these biopolymers maintain good results in terms of cell viability and differentiation, along with tunable properties in terms of hydrophilic character, mechanical properties and enzymatic degradation.

12.
Acta Biomater ; 166: 655-669, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37142110

RESUMEN

Nanotechnology-based approaches are emerging as promising strategies to treat different bone pathologies such as infection, osteoporosis or cancer. To this end, several types of nanoparticles are being investigated, including those based on mesoporous bioactive glasses (MGN) which exhibit exceptional structural and textural properties and whose biological behaviour can be improved by including therapeutic ions in their composition and loading them with biologically active substances. In this study, the bone regeneration capacity and antibacterial properties of MGNs in the SiO2-CaO-P2O5 system were evaluated before and after being supplemented with 2.5% or 4% ZnO and loaded with curcumin. in vitro studies with preosteoblastic cells and mesenchymal stem cells allowed determining the biocompatible MGNs concentrations range. Moreover, the bactericidal effect of MGNs with zinc and curcumin against S. aureus was demonstrated, as a significant reduction of bacterial growth was detected in both planktonic and sessile states and the degradation of a pre-formed bacterial biofilm in the presence of the nanoparticles also occurred. Finally, MC3T3-E1 preosteoblastic cells and S. aureus were co-cultured to investigate competitive colonisation between bacteria and cells in the presence of the MGNs. Preferential colonisation and survival of osteoblasts and effective inhibition of both bacterial adhesion and biofilm formation of S. aureus in the co-culture system were detected. Our study demonstrated the synergistic antibacterial effect of zinc ions combined with curcumin and the enhancement of the bone regeneration characteristics of MGNs containing zinc and curcumin to obtain systems capable of simultaneously promoting bone regeneration and controlling infection. STATEMENT OF SIGNIFICANCE: In search of a new approach to regenerate bone and fight infections, a nanodevice based on mesoporous SiO2-CaO-P2O5 glass nanoparticles enriched with Zn2+ ions and loaded with curcumin was designed. This study demonstrates the synergistic effect of the simultaneous presence of zinc ions and curcumin in the nanoparticles that significantly reduces the bacterial growth in planktonic state and is capable to degrade pre-formed S. aureus biofilms whereas the nanosystem exhibits a cytocompatible behaviour in the presence of preosteoblasts and mesenchymal stem cells. Based on these results, the designed nanocarrier represents a promising alternative for the treatment of acute and chronic infections in bone tissues, while avoiding the significant current problem of bacterial resistance to antibiotics.


Asunto(s)
Curcumina , Nanopartículas , Curcumina/farmacología , Dióxido de Silicio/química , Zinc/farmacología , Staphylococcus aureus , Nanopartículas/uso terapéutico , Nanopartículas/química , Huesos , Antibacterianos/farmacología , Antibacterianos/química , Iones , Vidrio/química
13.
Mikrochim Acta ; 190(4): 132, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914921

RESUMEN

A combination of omics techniques (transcriptomics and metabolomics) has been used to elucidate the mechanisms responsible for the antitumor action of a nanosystem based on a Ag core coated with mesoporous silica on which transferrin has been anchored as a targeting ligand against tumor cells (Ag@MSNs-Tf). Transcriptomics analysis has been carried out by gene microarrays and RT-qPCR, while high-resolution mass spectrometry has been used for metabolomics. This multi-omics strategy has enabled the discovery of the effect of this nanosystem on different key molecular pathways including the glycolysis, the pentose phosphate pathway, the oxidative phosphorylation and the synthesis of fatty acids, among others.


Asunto(s)
Antineoplásicos , Nanopartículas , Plata , Metabolómica , Nanopartículas/química , Plata/química , Transcriptoma , Transferrina
14.
Pharmaceutics ; 15(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36839771

RESUMEN

In recent years, the functionalization of mesoporous silica nanoparticles (MSNs) with different types of responsive pore gatekeepers have shown great potential for the formulation of drug delivery systems (DDS) with minimal premature leakage and site-specific controlled release. New nanotechnological approaches have been developed with the objective of utilizing natural biopolymers as smart materials in drug delivery applications. Natural biopolymers are sensitive to various physicochemical and biological stimuli and are endowed with intrinsic biodegradability, biocompatibility, and low immunogenicity. Their use as biocompatible smart coatings has extensively been investigated in the last few years. This review summarizes the MSNs coating procedures with natural polysaccharides and protein-based biopolymers, focusing on their application as responsive materials to endogenous stimuli. Biopolymer-coated MSNs, which conjugate the nanocarrier features of mesoporous silica with the biocompatibility and controlled delivery provided by natural coatings, have shown promising therapeutic outcomes and the potential to emerge as valuable candidates for the selective treatment of various diseases.

15.
Pharmaceutics ; 15(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36839981

RESUMEN

Osteoporosis is the most common type of bone disease. Conventional treatments are based on the use of antiresorptive drugs and/or anabolic agents. However, these treatments have certain limitations, such as a lack of bioavailability or toxicity in non-specific tissues. In this regard, pleiotrophin (PTN) is a protein with potent mitogenic, angiogenic, and chemotactic activity, with implications in tissue repair. On the other hand, mesoporous silica nanoparticles (MSNs) have proven to be an effective inorganic drug-delivery system for biomedical applications. In addition, the surface anchoring of cationic polymers, such as polyethylenimine (PEI), allows for greater cell internalization, increasing treatment efficacy. In order to load and release the PTN to improve its effectiveness, MSNs were successfully internalized in MC3T3-E1 mouse pre-osteoblastic cells and human mesenchymal stem cells. PTN-loaded MSNs significantly increased the viability, mineralization, and gene expression of alkaline phosphatase and Runx2 in comparison with the PTN alone in both cell lines, evidencing its positive effect on osteogenesis and osteoblast differentiation. This proof of concept demonstrates that MSN can take up and release PTN, developing a potent osteogenic and differentiating action in vitro in the absence of an osteogenic differentiation-promoting medium, presenting itself as a possible treatment to improve bone-regeneration and osteoporosis scenarios.

16.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768328

RESUMEN

Bone diseases are a global public concern that affect millions of people. Even though current treatments present high efficacy, they also show several side effects. In this sense, the development of biocompatible nanoparticles and macroscopic scaffolds has been shown to improve bone regeneration while diminishing side effects. In this review, we present a new trend in these materials, reporting several examples of materials that specifically recognize several agents of the bone microenvironment. Briefly, we provide a subtle introduction to the bone microenvironment. Then, the different targeting agents are exposed. Afterward, several examples of nanoparticles and scaffolds modified with these agents are shown. Finally, we provide some future perspectives and conclusions. Overall, this topic presents high potential to create promising translational strategies for the treatment of bone-related diseases. We expect this review to provide a comprehensive description of the incipient state-of-the-art of bone-targeting agents in bone regeneration.


Asunto(s)
Materiales Biocompatibles , Enfermedades Óseas , Humanos , Materiales Biocompatibles/farmacología , Andamios del Tejido , Ingeniería de Tejidos , Enfermedades Óseas/tratamiento farmacológico , Regeneración Ósea
17.
Pharmaceutics ; 15(1)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36678928

RESUMEN

Surface microbial colonization and its potential biofilm formation are currently a major unsolved problem, causing almost 75% of human infectious diseases. Pathogenic biofilms are capable of surviving high antibiotic doses, resulting in inefficient treatments and, subsequently, raised infection prevalence rates. Antibacterial coatings have become a promising strategy against the biofilm formation in biomedical devices due to their biocidal activity without compromising the bulk material. Here, we propose for the first time a silver-based metal-organic framework (MOF; here denoted AgBDC) showing original antifouling properties able to suppress not only the initial bacterial adhesion, but also the potential surface contamination. Firstly, the AgBDC stability (colloidal, structural and chemical) was confirmed under bacteria culture conditions by using agar diffusion and colony counting assays, evidencing its biocide effect against the challenging E. coli, one of the main representative indicators of Gram-negative resistance bacteria. Then, this material was shaped as homogeneous spin-coated AgBDC thin film, investigating its antifouling and biocide features using a combination of complementary procedures such as colony counting, optical density or confocal scanning microscopy, which allowed to visualize for the first time the biofilm impact generated by MOFs via a specific fluorochrome, calcofluor.

18.
Acta Biomater ; 155: 654-666, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332875

RESUMEN

The development of new biomaterials for bone tissue regeneration with high bioactivity abilities and antibacterial properties is being intensively investigated. We have synthesized nanocomposites formed by mesoporous bioactive glasses (MBGs) in the ternary SiO2, CaO and P2O5 system doped with metallic silver nanoparticles (AgNPs) that were homogenously embedded in the MBG matrices. Ag/MBG nanocomposites have been directly synthesized and silver species were spontaneously reduced to metallic AgNPs by high temperatures (700 °C) obtained of last MBG synthesis step. Three-dimensional silver-containing mesoporous bioactive glass scaffolds were fabricated showing uniformly interconnected ultrapores, macropores and mesopores. The manufacture method consisted of a combination of a single-step sol-gel route in the mesostructure directing agent (P123) presence and a biomacromolecular polymer such as (hydroxypropyl)methyl cellulose (HPMC) as the macrostructure template, followed by rapid prototyping (RP) technique. Biological properties of Ag/MBG nanocomposites were evaluated by MC3T3-E1 preosteoblastic cells culture tests and bacterial (E. coli and S. aureus) assays. The results showed that the MC3T3-E1 cells morphology was not affected while preosteoblastic proliferation decreased when the presence of silver increased. Antimicrobial assays indicated that bacterial growth inhibition and biofilm destruction were directly proportional to the increased presence of AgNPs in the MBG matrices. Furthermore, in vitro co-culture of MC3T3-E1 cells and S. aureus bacteria confirmed that AgNPs presence was necessary for antibacterial activity, and AgNPs slightly affected cell proliferation parameters. Therefore, 3D printed scaffolds with hierarchical pore structure and high antimicrobial capacity have potential applications in bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study combines three key scientific aspects for bone tissue engineering: (i) materials with high bioactivity to repair and regenerate bone tissue that (ii) contain antibacterial agents to reduce the infection risk (iii) in the form of three-dimensional scaffolds with hierarchical porosity. Innovative methodology is described here: sol-gel method, which is employed to obtain mesoporous bioactive glass matrices doped with metallic silver nanoparticles where different polymer templates facilitate the different size scales presence, and rapid prototyping technique that provides ultra-large macroporosity according to computer-aided design. The dual scaffolds obtained are biocompatible and deliver active doses of silver capable of combating bone infections, which represent one of the most serious complications associated to surgical treatments of bone diseases and fractures.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/farmacología , Dióxido de Silicio , Staphylococcus aureus , Escherichia coli , Materiales Biocompatibles/química , Antibacterianos/farmacología , Antibacterianos/química , Polímeros , Impresión Tridimensional , Vidrio/química , Andamios del Tejido/química , Porosidad
19.
Acta Biomater ; 157: 395-407, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36476646

RESUMEN

In the last few years, nanotechnology has revolutionized the potential treatment of different diseases. However, the use of nanoparticles for drug delivery might be limited by their immune clearance, poor biocompatibility and systemic immunotoxicity. Hypotheses for overcoming rejection from the body and increasing their biocompatibility include coating nanoparticles with cell membranes. Additionally, source cell-specific targeting has been reported when coating nanoparticles with tumor cells membranes. Here we show that coating mesoporous silica nanoparticles with membranes derived from preosteoblastic cells could be employed to develop potential treatments of certain bone diseases. These nanoparticles were selected because of their well-established drug delivery features. On the other hand MC3T3-E1 cells were selected because of their systemic migration capabilities towards bone defects. The coating process was here optimized ensuring their drug loading and delivery features. More importantly, our results demonstrated how camouflaged nanocarriers presented cellular selectivity and migration capability towards the preosteoblastic source cells, which might constitute the inspiration for future bone disease treatments. STATEMENT OF SIGNIFICANCE: This work presents a new nanoparticle formulation for drug delivery able to selectively target certain cells. This approach is based on Mesoporous Silica Nanoparticles coated with cell membranes to overcome the potential rejection from the body and increase their biocompatibility prolonging their circulation time. We have employed membranes derived from preosteoblastic cells for the potential treatment of certain bone diseases. Those cells have shown systemic migration capabilities towards bone defects. The coating process was optimized and their appropriate drug loading and releasing abilities were confirmed. The important novelty of this work is that the camouflaged nanocarriers presented cellular selectivity and migration capability towards the preosteoblastic source cells, which might constitute the inspiration for future bone disease treatments.


Asunto(s)
Enfermedades Óseas , Nanopartículas , Humanos , Biomimética , Sistemas de Liberación de Medicamentos , Nanopartículas/uso terapéutico , Dióxido de Silicio
20.
Pharmaceutics ; 14(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36559130

RESUMEN

Nowadays, mesoporous bioactive glasses (MBGs) are envisaged as promising candidates in the field of bioceramics for bone tissue regeneration. This is ascribed to their singular chemical composition, structural and textural properties and easy-to-functionalize surface, giving rise to accelerated bioactive responses and capacity for local drug delivery. Since their discovery at the beginning of the 21st century, pioneering research efforts focused on the design and fabrication of MBGs with optimal compositional, textural and structural properties to elicit superior bioactive behavior. The current trends conceive MBGs as multitherapy systems for the treatment of bone-related pathologies, emphasizing the need of fine-tuning surface functionalization. Herein, we focus on the recent developments in MBGs for biomedical applications. First, the role of MBGs in the design and fabrication of three-dimensional scaffolds that fulfil the highly demanding requirements for bone tissue engineering is outlined. The different approaches for developing multifunctional MBGs are overviewed, including the incorporation of therapeutic ions in the glass composition and the surface functionalization with zwitterionic moieties to prevent bacterial adhesion. The bourgeoning scientific literature on MBGs as local delivery systems of diverse therapeutic cargoes (osteogenic/antiosteoporotic, angiogenic, antibacterial, anti-inflammatory and antitumor agents) is addressed. Finally, the current challenges and future directions for the clinical translation of MBGs are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA