Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
New Phytol ; 218(4): 1383-1392, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29655212

RESUMEN

Trees scale leaf (AL ) and xylem (AX ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL  : AX balance in response to climate conditions, but whether trees of different species acclimate in AL  : AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b Ëœ 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.


Asunto(s)
Hojas de la Planta/anatomía & histología , Árboles/crecimiento & desarrollo , Madera/anatomía & histología , Europa (Continente) , Geografía , Modelos Estadísticos , Especificidad de la Especie , Árboles/anatomía & histología , Xilema/anatomía & histología
2.
Tree Physiol ; 38(2): 232-242, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29194496

RESUMEN

A better understanding and prediction of the impact of changing climate on tree stem growth could greatly benefit from the combination of anatomical and ecophysiological knowledge, yet the majority of studies focus on one research field only. We propose an approach that combines the method of pinning (cambial wounding) to timestamp anatomical X-ray computed microtomography images with continuous measurements of sap flow and stem diameter variations. By pinning the cambium of well-watered and drought-treated young African tropical trees of the species Maesopsis eminii Engl. we could quantify wood formation during a specific period of time and relate it to tree physiology and prevailing microclimate. Integrating continuous plant measurements and high-frequency pinning proved very useful to visualize and quantify the effects on stem growth of drought in M. eminii. Wood formation completely stopped during drought, and was associated with a strong shrinkage in stem diameter. Next, an unexpected increase in stem diameter was observed during drought, probably caused by root pressure, but not accompanied by wood formation. Our proposed approach of combining continuous plant measurements with cambial pinning is very promising to relate ecophysiology to stem anatomy and to understand the mechanisms underlying tree stem growth and bridge the gaps between the two research fields.


Asunto(s)
Sequías , Rhamnaceae/anatomía & histología , Rhamnaceae/fisiología , Agua/metabolismo , Madera/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Rhamnaceae/crecimiento & desarrollo , Uganda , Madera/análisis , Madera/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA