Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Diabetologia ; 67(6): 1079-1094, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38512414

RESUMEN

AIMS/HYPOTHESIS: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS: Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.


Asunto(s)
Islas de CpG , Metilación de ADN , Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Animales , Ratones , Islas de CpG/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Transgénicos , ADN Metiltransferasa 3A/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina/fisiología
2.
PLoS One ; 19(2): e0297752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38363755

RESUMEN

The increased fragmentation caused by harsher ionization methods used during mass spectrometry such as electron ionization can make interpreting the mass spectra of peptides difficult. Therefore, the development of tools to aid in this spectral analysis is important in utilizing these harsher ionization methods to study peptides, as these tools may be more accessible to some researchers. We have compiled fragmentation mechanisms described in the literature, confirmed them experimentally, and used them to create a Python-based fragment prediction model for peptides analyzed under direct exposure probe electron ionization mass spectrometry. This initial model has been tested using single amino acids as well as targeted libraries of short peptides. It was found that the model does well in predicting fragments of peptides composed of amino acids for which the model is well-defined, but several cases where additional mechanistic information needs to be incorporated have been identified.


Asunto(s)
Aminoácidos , Fragmentos de Péptidos , Fragmentos de Péptidos/metabolismo , Aminoácidos/química , Electrones , Espectrometría de Masas/métodos , Péptidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos
3.
bioRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076935

RESUMEN

Aims/hypothesis: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly-connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility which we explore here by focussing on the imprinted gene neuronatin (Nnat), which is required for normal insulin synthesis and secretion. Methods: Single cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing eGFP under the control of the Nnat enhancer/promoter regions were generated for fluorescence-activated cell (FAC) sorting of beta cells and downstream analysis of CpG methylation by bisulphite and RNA sequencing, respectively. Animals deleted for the de novo methyltransferase, DNMT3A from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 and Cal-590. Insulin secretion was measured using Homogeneous Time Resolved Fluorescence Imaging. Results: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic data sets demonstrated the early establishment of Nnat-positive and negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a sub-population specialised for insulin production, reminiscent of recently-described "ßHI" cells and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialization. Conclusions/interpretation: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may thus contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes.

4.
Front Endocrinol (Lausanne) ; 14: 1196460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229454

RESUMEN

Cellular senescence is a complex process marked by permanent cell-cycle arrest in response to a variety of stressors, and acts as a safeguard against the proliferation of damaged cells. Senescence is not only a key process underlying aging and development of many diseases, but has also been shown to play a vital role in embryogenesis as well as tissue regeneration and repair. In context of the pancreatic beta-cells, that are essential for maintaining glucose homeostasis, replicative senescence is responsible for the age-related decline in regenerative capacity. Stress induced premature senescence is also a key early event underlying beta-cell failure in both type 1 and type 2 diabetes. Targeting senescence has therefore emerged as a promising therapeutic avenue for diabetes. However, the molecular mechanisms that mediate the induction of beta-cell senescence in response to various stressors remain unclear. Nor do we know if senescence plays any role during beta-cell growth and development. In this perspective, we discuss the significance of senescence in beta-cell homeostasis and pathology and highlight emerging directions in this area that warrant our attention.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Senescencia Celular/fisiología , Envejecimiento/patología , Proliferación Celular , Puntos de Control del Ciclo Celular
5.
Nat Biomed Eng ; 6(10): 1180-1195, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36229662

RESUMEN

New antibiotics should ideally exhibit activity against drug-resistant bacteria, delay the development of bacterial resistance to them and be suitable for local delivery at desired sites of infection. Here, we report the rational design, via molecular-docking simulations, of a library of 17 candidate antibiotics against bone infection by wild-type and mutated bacterial targets. We screened this library for activity against multidrug-resistant clinical isolates and identified an antibiotic that exhibits potent activity against resistant strains and the formation of biofilms, decreases the chances of bacterial resistance and is compatible with local delivery via a bone-cement matrix. The antibiotic-loaded bone cement exhibited greater efficacy than currently used antibiotic-loaded bone cements against staphylococcal bone infections in rats. Potent and locally delivered antibiotic-eluting polymers may help address antimicrobial resistance.


Asunto(s)
Antibacterianos , Cementos para Huesos , Ratas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Prótesis e Implantes
6.
Front Cell Dev Biol ; 10: 868592, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602600

RESUMEN

Pancreatic beta-cells secrete the hormone insulin, which is essential for the regulation of systemic glucose homeostasis. Insufficiency of insulin due to loss of functional beta-cells results in diabetes. Epigenetic mechanisms orchestrate the stage-specific transcriptional programs that guide the differentiation, functional maturation, growth, and adaptation of beta-cells in response to growth and metabolic signals throughout life. Primary among these mechanisms is regulation by the Polycomb Repressive Complexes (PRC) that direct gene-expression via histone modifications. PRC dependent histone modifications are pliable and provide a degree of epigenetic plasticity to cellular processes. Their modulation dictates the spatio-temporal control of gene-expression patterns underlying beta-cell homeostasis. Emerging evidence shows that dysregulation of PRC-dependent epigenetic control is also a hallmark of beta-cell failure in diabetes. This minireview focuses on the multifaceted contributions of PRC modules in the specification and maintenance of terminally differentiated beta-cell phenotype, as well as beta-cell growth and adaptation. We discuss the interaction of PRC regulation with different signaling pathways and mechanisms that control functional beta-cell mass. We also highlight recent advances in our understanding of the epigenetic regulation of beta-cell homeostasis through the lens of beta-cell pathologies, namely diabetes and insulinomas, and the translational relevance of these findings. Using high-resolution epigenetic profiling and epigenetic engineering, future work is likely to elucidate the PRC regulome in beta-cell adaptation versus failure in response to metabolic challenges and identify opportunities for therapeutic interventions.

7.
Case Rep Neurol ; 13(2): 521-528, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720957

RESUMEN

Cerebral venous sinus thrombosis (CVST) is an uncommon stroke that has a varied clinical profile. Quite often, speech language pathologists limit the assessment of these patients to a language assessment alone. Subsequently, it is possible that they may miss out certain relevant information which can aid them in their intervention. The aim of the current study was to highlight the relevance of adopting a test battery approach to assess a patient diagnosed with CVST. Here, we present a test battery approach to assess a 43-year-old patient who reported to us after CVST. The test battery included various formal and informal measures. Apart from the routine measures, an additional test for assessing the cognitive linguistic profile was included in the battery which yielded us significant information regarding the patient. Thus, we concluded that speech language pathologists should follow a test battery approach to get a clear idea about the clinical profile of the patient, to avoid misdiagnosis, and also to provide suitable intervention.

8.
J Genet ; 1002021.
Artículo en Inglés | MEDLINE | ID: mdl-34187977

RESUMEN

The freshwater leaf fish Pristolepis rubripinnis belongs to the family Pristolepididae, restricted to Pamba and Chalakudy rivers of Kerala, India. In the present study, we sequenced the complete mitogenome of P. rubripinnis and analysed its phylogeny in the order Anabantiformes. The 16622-bp long genome comprised of 13 protein-coding genes, two rRNA genes, 22 transfer RNAs (tRNAs) genes and had a noncoding control region. All the protein-coding genes, tRNA and rRNA were located on the heavy strand, except nad6 and eight tRNAs (glutamine, alanine, asparagine, cysteine, tyrosine, serine, glutamic acid and proline) transcribed from L strand. The genome exhibited an overlapping between atp8 and atp6 (2 bp), nad4 and nad4l (2 bp), tRNAIle and tRNAGln. (1 bp), tRNAThr and tRNAPro (1 bp). Around 157 bp, an intergenic spacer was identified. The overall GC-skews and AT-skews of the H-strand mitogenome were -0.35 and 0.079, respectively, revealing that the H-strand consisted of equal amounts of A and T and that the overall nucleotide composition was C skewed. All tRNA genes exhibited cloverleaf secondary structures, while the secondary structure of tRNASer lacked a discernible dihydrouridine stem. The phylogenetic analysis of available mitogenomes of Anabantiformes revealed a sister group relationship between Pristolepididae and Channidae. The whole mitogenome of Pristolepis rubripinnis will form a molecular resource for further taxonomic and conservation studies on this endemic freshwater fish.


Asunto(s)
ADN Mitocondrial/genética , Peces/genética , Genoma Mitocondrial/genética , Filogenia , Animales , Agua Dulce , India , ARN Ribosómico/genética , ARN de Transferencia/genética , Secuenciación Completa del Genoma
9.
FEBS Lett ; 594(6): 1005-1020, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31724164

RESUMEN

Topoisomerases, the ubiquitous enzymes involved in all DNA processes across the biological world, are targets for various anticancer and antimicrobial agents. In Entamoeba histolytica, the causative agent of amebiasis, we found one of seven unexplored putative topoisomerases to be highly upregulated during heat shock and oxidative stress, and also during the late hours of encystation. Further analysis revealed the upregulated enzyme to be a eukaryotic type IIA topoisomerase (TopoII) with demonstrable activity in vitro. This enzyme is localized to newly forming nuclei during encystation. Gene silencing of the TopoII reduces viability and encystation efficiency. Notable susceptibility of Entamoeba TopoII to prokaryotic topoisomerase inhibitors opens up the possibility for exploring this enzyme as a new antiamoebic target.


Asunto(s)
Amebicidas/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Sistemas de Liberación de Medicamentos , Entamoeba histolytica/enzimología , Respuesta al Choque Térmico , Estrés Oxidativo , Proteínas Protozoarias , Inhibidores de Topoisomerasa II/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo
10.
Mol Biochem Parasitol ; 220: 19-27, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29331577

RESUMEN

Phosphorylation is an important post-translational modification of proteins and is involved in the regulation of a variety of cellular events. The proteome of Entamoeba invadens, the reptilian counterpart of Entamoeba histolytica consists of an overwhelming number of putative protein kinases, and some may have a role to play in Entamoeba encystation. In this study, we have identified a novel protein kinase named as EiCSpk (Entamoeba invadenscyst specific protein kinase) which expressed almost exclusively during encystation. It is an active Protein kinase C with a characteristic substrate phosphorylation and auto-phosphorylation property. Gene silencing study has unveiled its role as a regulator of chitin synthesis through transcriptional activation of the chitin synthesis pathway genes along with glycogen phosphorylases that are involved in the influx of glucose from glycogen breakdown for chitin synthesis.


Asunto(s)
Quitina/biosíntesis , Entamoeba/enzimología , Entamoeba/metabolismo , Proteína Quinasa C/metabolismo , Vías Biosintéticas/genética , Entamoeba/genética , Silenciador del Gen , Glucógeno Fosforilasa/metabolismo , Proteína Quinasa C/genética , Activación Transcripcional
11.
J Clin Diagn Res ; 10(1): MC01-3, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26894098

RESUMEN

INTRODUCTION: Change in resonance is the most commonly experienced speech problems in children diagnosed with cleft lip and palate. The degree of nasality during normal speech production is maintained by the changes in velopharyngeal port. These variations in speech signal are reported to be successfully captured using acoustical tools like spectral analysis. AIM: The present study investigated to note voice low tone to high tone ratio (VLHR) values for phonation samples of individuals with cleft palate before and after surgery. MATERIALS AND METHODS: Thirty children with congenital cleft of palate within 8 to 15 years of age participated in the study. Three trials of sustained vowels (/a/,/i/ and /u/) were recorded at their comfortable pitch and loudness level in a noise free room using a hand held dynamic microphone. Praat software that utilized Hillenbrand algorithm was used to extract the VLHR values for samples recorded before and after recovery from the surgery. RESULTS: Statistical analysis revealed significant decrease in VLHR values after surgery in comparison to before the surgery. Analysis of Variance revealed statistical significant difference at 95% confidence level. CONCLUSION: It is concluded that VLHR parameter could be used as an index to measure nasality and can be included in the routine tool assessment protocol.

12.
Reproduction ; 146(1): 13-26, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23633624

RESUMEN

The present study identifies uterine fluid (UF) proteins that display differential abundance during the embryo-permissive phase in nonconception and conception cycles in rats. UF samples were collected from nonpregnant rats in the proestrous (n=17) and metestrous (n=18) phases and also from pregnant (n=17) and pseudopregnant (n=17) rats on day 4 post coitus. UF protein profile in the metestrous phase was compared with that in the proestrous phase. Similarly, UF protein profile of the pregnant rats was compared with that of the pseudopregnant rats. Two-dimensional PAGE, followed by densitometric analysis of the paired protein spots, revealed differential abundance of 44 proteins in the metestrous phase, compared with that in the proestrous phase. Of these, 29 proteins were identified by matrix-assisted laser desorption/ionization time-of-flight or liquid chromatography-tandem mass spectrometry. Functional groups such as proteases, protease inhibitors, and oxidoreductases were enriched in differentially abundant proteins. Total protease activity in UF was found to be significantly (P<0.05; t-test) higher in the proestrous phase, compared with that in the metestrous phase. Furthermore, 41 UF proteins were found to be differentially abundant in pregnant rats, compared with pseudopregnant rats. Of these, 11 proteins could be identified. Immunoblotting analysis confirmed significantly higher (P<0.05; t-test) abundance of ß-actin, Rho-specific guanine nucleotide dissociation inhibitor alpha (Rho-GDIα), and peroxiredoxin-2 and -6 in the metestrous phase, compared with that in the proestrous phase. Compared with pseudopregnant rats, pregnant rats had significantly higher (P<0.05; t-test) levels of UF ß-actin and Rho-GDIα. Furthermore, these proteins could be detected in the culture supernatants of endometrial epithelial cell lines, thereby providing an evidence of their secretion from endometrial epithelial cells. Data obtained from the study expand our knowledge on the uterine milieu that favours embryo implantation.


Asunto(s)
Preñez/fisiología , Útero/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Electroforesis en Gel Bidimensional , Implantación del Embrión , Endometrio/metabolismo , Femenino , Humanos , Metestro/fisiología , Péptido Hidrolasas/metabolismo , Peroxiredoxina VI/metabolismo , Embarazo , Seudoembarazo/metabolismo , Ratas , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA