Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 186: 107843, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37286064

RESUMEN

Understanding the processes that generate and maintain biodiversity at and below the species level is a central goal of evolutionary biology. Here we explore the spatial and temporal drivers of diversification of the treefrog subgroup Dendropsophus rubicundulus, a subgroup of the D. microcephalus species group, over periods of pronounced geological and climatic changes in the Neotropical savannas that they inhabit. This subgroup currently comprises 11 recognized species distributed across the Brazilian and Bolivian savannas, but the taxonomy has been in a state of flux, necessitating reexamination. Using newly generated single nucleotide polymorphism (SNP) data from restriction-site associated DNA sequencing (RADseq) and mitochondrial 16S sequence data for ∼150 specimens, we inferred phylogenetic relationships, tested species limits using a model-based approach, and estimated divergence times to gain insights into the geographic and climatic events that affected the diversification of this subgroup. Our results recognized at least nine species: D. anataliasiasi, D. araguaya, D. cerradensis, D. elianeae, D. jimi, D. rubicundulus, D. tritaeniatus, D. rozenmani, and D. sanborni. Although we did not collect SNP data for the latter two species, they are likely distinct based on mitochondrial data. In addition, we found genetic structure within the widespread species D. rubicundulus, which comprises three allopatric lineages connected by gene flow upon secondary contact. We also found evidence of population structure and perhaps undescribed diversity in D. elianeae, which warrants further study. The D. rubicundulus subgroup is estimated to have originated in the Late Miocene (∼5.45 million years ago), with diversification continuing through the Pliocene and Early Pleistocene, followed by the most recent divergence of D. rubicundulus lineages in the Middle Pleistocene. The epeirogenic uplift followed by erosion and denudation of the central Brazilian plateau throughout the Pliocene and Pleistocene, in combination with the increasing frequency and amplitude of climatic fluctuations during the Pleistocene, was important for generating and structuring diversity at or below the species level in the D. rubicundulus subgroup.


Asunto(s)
Anuros , Pradera , Animales , Filogenia , Filogeografía , Anuros/genética , Brasil , ADN Mitocondrial/genética , Variación Genética
2.
Mol Phylogenet Evol ; 168: 107400, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35031467

RESUMEN

Troglomorphism-any morphological adaptation enabling life to the constant darkness of caves, such as loss of pigment, reduced eyesight or blindness, over-developed tactile and olfactory organs-has long intrigued biologists. However, inferring the proximate and ultimate mechanisms driving the evolution of troglomorphism (stygomorphism) in freshwater fish requires a sound understanding of the evolutionary relationships between surface and stygomorphic lineages. We use Restriction Site Associated DNA Sequencing (RADseq) to better understand the evolution of the Sinocyclocheilus fishes of China. With a remarkable array of derived stygomorphic traits, they comprise the largest cavefish diversification in the world, emerging as a multi-species model system to study evolutionary novelty. We sequenced a total of 120 individuals throughout the Sinocyclocheilus distribution. The data comprised a total of 646,497 bp per individual, including 4378 loci and 67,983 SNPs shared across a minimum of 114 individuals at a given locus. Phylogenetic analyses using either the concatenated RAD loci (RAxML) or the SNPs under a coalescent model (SVDquartets, SNAPP) showed a high degree of congruence with similar topologies and high node support (>95 for most nodes in the phylogeny). The major clades recovered conform to a pattern previously established using Sanger-based mt-DNA sequences, with a few notable exceptions. We now recognize six major clades in this group, elevating the blind cavefish S. tianlinensis and the micro-eyed S. microphthalmus as two new distinct clades due to their deep divergence from other clades. PCA plots of the SNP data also support the recognition of six major clusters of species congruent with the identified clades in ordination space. A Bayes factor delimitation (BFD) analysis showed support for 21 species, recognizing 19 previously described species and two putative new cryptic ones. Two species whose identities were previously disputed, S. furcodorsalis and S. tianeensis, are supported here as distinct species. In addition, our multi-species calibrated tree in SNAPP suggests that the genus Sinocyclocheilus originated around 10.16 Mya, with most speciation events occurring in the last 2 Mya, likely favored by the uplift of the Qinghai-Tibetan Plateau and cave occupation induced by climate-driven aridification during this period. These results provide a firm basis for future comparative studies on the evolution of Sinocyclocheilus and its adaptations to cave life.


Asunto(s)
Evolución Biológica , Cuevas , Cyprinidae , Filogenia , Animales , Teorema de Bayes , China , Cyprinidae/clasificación , Oscuridad , Polimorfismo de Nucleótido Simple
3.
Evolution ; 76(2): 346-356, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34878663

RESUMEN

Sex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture-recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex-specific variation in aging rates was moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the "unguarded X/Z effect") or repeat-rich Y/W chromosome (the "toxic Y/W effect") could accelerate aging in the heterogametic sex in some vertebrate clades.


Asunto(s)
Caracteres Sexuales , Cromosomas Sexuales , Envejecimiento/genética , Anfibios/genética , Animales , Femenino , Masculino , Procesos de Determinación del Sexo , Cromosoma Y
4.
Mol Ecol ; 28(7): 1748-1764, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30742734

RESUMEN

Although the impact of Pleistocene glacial cycles on the diversification of the tropical biota was once dismissed, increasing evidence suggests that Pleistocene climatic fluctuations greatly affected the distribution and population divergence of tropical organisms. Landscape genomic analyses coupled with paleoclimatic distribution models provide a powerful way to understand the consequences of past climate changes on the present-day tropical biota. Using genome-wide SNP data and mitochondrial DNA, combined with projections of the species distribution across the late Quaternary until the present, we evaluate the effect of paleoclimatic shifts on the genetic structure and population differentiation of Hypsiboas lundii, a treefrog endemic to the South American Cerrado savanna. Our results show a recent and strong genetic divergence in H. lundii across the Cerrado landscape, yielding four genetic clusters that do not seem congruent with any current physical barrier to gene flow. Isolation by distance (IBD) explains some of the population differentiation, but we also find strong support for past climate changes promoting range shifts and structuring populations even in the presence of IBD. Post-Pleistocene population persistence in four main areas of historical stable climate in the Cerrado seems to have played a major role establishing the present genetic structure of this treefrog. This pattern is consistent with a model of reduced gene flow in areas with high climatic instability promoting isolation of populations, defined here as "isolation by instability," highlighting the effects of Pleistocene climatic fluctuations structuring populations in tropical savannas.


Asunto(s)
Anuros/genética , Cambio Climático , Genética de Población , Pradera , Animales , Brasil , ADN Mitocondrial/genética , Flujo Génico , Modelos Genéticos , Filogeografía , Polimorfismo de Nucleótido Simple , Aislamiento Reproductivo , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA