Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Phys Condens Matter ; 30(35): 353001, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30084390

RESUMEN

The rapid development of the computational methods based on density functional theory, on the one hand, and of time-, energy-, and momentum-resolved spectroscopy, on the other hand, allows today an unprecedently detailed insight into the processes governing hot-electron relaxation dynamics, and, in particular, into the role of the electron-phonon coupling. Instead of focusing on the development of a particular method, theoretical or experimental, this review aims to treat the progress in the understanding of the electron-phonon coupling which can be gained from both, on the basis of recently obtained results. We start by defining several regimes of hot electron relaxation via electron-phonon coupling, with respect to the electron excitation energy. We distinguish between energy and momentum relaxation of hot electrons, and summarize, for several semiconductors of the IV and III-V groups, the orders of magnitude of different relaxation times in different regimes, on the basis of known experimental and numerical data. Momentum relaxation times of hot electrons become very short around 1 eV above the bottom of the conduction band, and such ultrafast relaxation mechanisms are measurable only in the most recent pump-probe experiments. Then, we give an overview of the recent progress in the experimental techniques allowing to obtain detailed information on the hot-electron relaxation dynamics, with the main focus on time-, energy-, and momentum-resolved photoemission experiments. The particularities of the experimental approach developed by one of us, which allows to capture time-, energy-, and momentum-resolved hot-electron distributions, as well as to measure momentum relaxation times of the order of 10 fs, are discussed. We further discuss the main advances in the calculation of the electron-phonon scattering times from first principles over the past ten years, in semiconducting materials. Ab initio techniques and efficient interpolation methods provide the possibility to calculate electron-phonon scattering times with high precision at reasonable numerical cost. We highlight the methods of analysis of the obtained numerical results, which allow to give insight into the details of the electron-phonon scattering mechanisms. Finally, we discuss the concept of hot electron ensemble which has been proposed recently to describe the hot-electron relaxation dynamics in GaAs, the applicability of this concept to other materials, and its limitations. We also mention some open problems.

2.
J Phys Condens Matter ; 29(46): 465901, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29064822

RESUMEN

Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

3.
Phys Rev Lett ; 108(25): 256808, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-23004637

RESUMEN

We investigate the temporal evolution of the electronic states at the bismuth (111) surface by means of time- and angle-resolved photoelectron spectroscopy. The binding energy of bulklike bands oscillates with the frequency of the A(1g) phonon mode, whereas surface states are insensitive to the coherent displacement of the lattice. A strong dependence of the oscillation amplitude on the electronic wave vector is correctly reproduced by ab initio calculations of electron-phonon coupling. Besides these oscillations, all the electronic states also display a photoinduced shift towards higher binding energy whose dynamics follows the evolution of the electronic temperature.

4.
Phys Rev Lett ; 87(8): 085506, 2001 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-11497959

RESUMEN

Density functional theory is demonstrated to reproduce the 13C and 11B NMR chemical shifts of icosahedral boron carbides with sufficient accuracy to extract previously unresolved structural information from experimental NMR spectra. B4C can be viewed as an arrangement of 3-atom linear chains and 12-atom icosahedra. According to our results, all the chains have a CBC structure. Most of the icosahedra have a B11C structure with the C atom placed in a polar site, and a few percent have a B (12) structure or a B10C2 structure with the two C atoms placed in two antipodal polar sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA