Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Genet ; 19(8): e1010914, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37643184

RESUMEN

Suppression of transposable elements (TEs) is paramount to maintain genomic integrity and organismal fitness. In D. melanogaster, the flamenco locus is a master suppressor of TEs, preventing the mobilization of certain endogenous retrovirus-like TEs from somatic ovarian support cells to the germline. It is transcribed by Pol II as a long (100s of kb), single-stranded, primary transcript, and metabolized into ~24-32 nt Piwi-interacting RNAs (piRNAs) that target active TEs via antisense complementarity. flamenco is thought to operate as a trap, owing to its high content of recent horizontally transferred TEs that are enriched in antisense orientation. Using newly-generated long read genome data, which is critical for accurate assembly of repetitive sequences, we find that flamenco has undergone radical transformations in sequence content and even copy number across simulans clade Drosophilid species. Drosophila simulans flamenco has duplicated and diverged, and neither copy exhibits synteny with D. melanogaster beyond the core promoter. Moreover, flamenco organization is highly variable across D. simulans individuals. Next, we find that D. simulans and D. mauritiana flamenco display signatures of a dual-stranded cluster, with ping-pong signals in the testis and/or embryo. This is accompanied by increased copy numbers of germline TEs, consistent with these regions operating as functional dual-stranded clusters. Overall, the physical and functional diversity of flamenco orthologs is testament to the extremely dynamic consequences of TE arms races on genome organization, not only amongst highly related species, but even amongst individuals.


Asunto(s)
Drosophila melanogaster , Drosophila , Masculino , Animales , Drosophila/genética , Drosophila melanogaster/genética , Drosophila simulans/genética , Evolución Biológica , Elementos Transponibles de ADN/genética , ARN de Interacción con Piwi
2.
PLoS Genet ; 19(6): e1010787, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37343034

RESUMEN

Although the biological utilities of endogenous RNAi (endo-RNAi) have been largely elusive, recent studies reveal its critical role in the non-model fruitfly Drosophila simulans to suppress selfish genes, whose unchecked activities can severely impair spermatogenesis. In particular, hairpin RNA (hpRNA) loci generate endo-siRNAs that suppress evolutionary novel, X-linked, meiotic drive loci. The consequences of deleting even a single hpRNA (Nmy) in males are profound, as such individuals are nearly incapable of siring male progeny. Here, comparative genomic analyses of D. simulans and D. melanogaster mutants of the core RNAi factor dcr-2 reveal a substantially expanded network of recently-emerged hpRNA-target interactions in the former species. The de novo hpRNA regulatory network in D. simulans provides insight into molecular strategies that underlie hpRNA emergence and their potential roles in sex chromosome conflict. In particular, our data support the existence of ongoing rapid evolution of Nmy/Dox-related networks, and recurrent targeting of testis HMG-box loci by hpRNAs. Importantly, the impact of the endo-RNAi network on gene expression flips the convention for regulatory networks, since we observe strong derepression of targets of the youngest hpRNAs, but only mild effects on the targets of the oldest hpRNAs. These data suggest that endo-RNAi are especially critical during incipient stages of intrinsic sex chromosome conflicts, and that continual cycles of distortion and resolution may contribute to speciation.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Masculino , Interferencia de ARN , Drosophila melanogaster/genética , Drosophila/genética , Drosophila simulans , Genómica , Lógica
3.
PLoS Biol ; 21(6): e3002136, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37289846

RESUMEN

Meiotic drive loci distort the normally equal segregation of alleles, which benefits their own transmission even in the face of severe fitness costs to their host organism. However, relatively little is known about the molecular identity of meiotic drivers, their strategies of action, and mechanisms that can suppress their activity. Here, we present data from the fruitfly Drosophila simulans that address these questions. We show that a family of de novo, protamine-derived X-linked selfish genes (the Dox gene family) is silenced by a pair of newly emerged hairpin RNA (hpRNA) small interfering RNA (siRNA)-class loci, Nmy and Tmy. In the w[XD1] genetic background, knockout of nmy derepresses Dox and MDox in testes and depletes male progeny, whereas knockout of tmy causes misexpression of PDox genes and renders males sterile. Importantly, genetic interactions between nmy and tmy mutant alleles reveal that Tmy also specifically maintains male progeny for normal sex ratio. We show the Dox loci are functionally polymorphic within D. simulans, such that both nmy-associated sex ratio bias and tmy-associated sterility can be rescued by wild-type X chromosomes bearing natural deletions in different Dox family genes. Finally, using tagged transgenes of Dox and PDox2, we provide the first experimental evidence Dox family genes encode proteins that are strongly derepressed in cognate hpRNA mutants. Altogether, these studies support a model in which protamine-derived drivers and hpRNA suppressors drive repeated cycles of sex chromosome conflict and resolution that shape genome evolution and the genetic control of male gametogenesis.


Asunto(s)
Drosophila simulans , Cromosomas Sexuales , Animales , Masculino , Drosophila simulans/genética , Cromosomas Sexuales/genética , Drosophila/genética , Cromosoma X , ARN Interferente Pequeño/genética , Razón de Masculinidad , Meiosis/genética
4.
Nucleic Acids Res ; 50(13): 7637-7654, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35801921

RESUMEN

Although the route to generate microRNAs (miRNAs) is often depicted as a linear series of sequential and constitutive cleavages, we now appreciate multiple alternative pathways as well as diverse strategies to modulate their processing and function. Here, we identify an unusually profound regulatory role of conserved loop sequences in vertebrate pre-mir-144, which are essential for its cleavage by the Dicer RNase III enzyme in human and zebrafish models. Our data indicate that pre-mir-144 dicing is positively regulated via its terminal loop, and involves the ILF3 complex (NF90 and its partner NF45/ILF2). We provide further evidence that this regulatory switch involves reshaping of the pre-mir-144 apical loop into a structure that is appropriate for Dicer cleavage. In light of our recent findings that mir-144 promotes the nuclear biogenesis of its neighbor mir-451, these data extend the complex hierarchy of nuclear and cytoplasmic regulatory events that can control the maturation of clustered miRNAs.


Asunto(s)
MicroARNs/genética , Ribonucleasa III/metabolismo , Pez Cebra , Animales , Humanos , MicroARNs/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
5.
Nat Ecol Evol ; 5(12): 1613-1623, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34862477

RESUMEN

Meiotic drivers are a class of selfish genetic elements whose existence is frequently hidden due to concomitant suppressor systems. Accordingly, we know little of their evolutionary breadth and molecular mechanisms. Here, we trace the evolution of the Dox meiotic drive system in Drosophila simulans, which affects male-female balance (sex ratio). Dox emerged via stepwise mobilization and acquisition of multiple D. melanogaster gene segments including from protamine, which mediates compaction of sperm chromatin. Moreover, we reveal novel Dox homologs and massive amplification of Dox superfamily genes on X chromosomes of its closest sisters D. mauritiana and D. sechellia. Emergence of Dox loci is tightly associated with 359-class satellite repeats that flank de novo genomic copies. In concert, we find coordinated diversification of autosomal hairpin RNA-class siRNA loci that target subsets of Dox superfamily genes. Overall, we reveal fierce genetic arms races between meiotic drive factors and siRNA suppressors associated with recent speciation.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Femenino , Masculino , Meiosis , Cromosoma X
6.
Genome Res ; 31(3): 380-396, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33563718

RESUMEN

The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the Drosophila simulans species complex (D. simulans, D. mauritiana, and D. sechellia), which speciated ∼250,000 yr ago. Our assemblies are comparable in contiguity and accuracy to the current D. melanogaster genome, allowing us to directly compare repetitive sequences between these four species. We find that at least 15% of the D. simulans complex species genomes fail to align uniquely to D. melanogaster owing to structural divergence-twice the number of single-nucleotide substitutions. We also find rapid turnover of satellite DNA and extensive structural divergence in heterochromatic regions, whereas the euchromatic gene content is mostly conserved. Despite the overall preservation of gene synteny, euchromatin in each species has been shaped by clade- and species-specific inversions, transposable elements, expansions and contractions of satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence among Y-linked genes, including copy number variation and recent gene duplications from autosomes. Our assemblies provide a valuable resource for studying genome evolution and its consequences for phenotypic evolution in these genetic model species.


Asunto(s)
Drosophila simulans/clasificación , Drosophila simulans/genética , Evolución Molecular , Genoma de los Insectos/genética , Animales , Variaciones en el Número de Copia de ADN/genética , Elementos Transponibles de ADN/genética , ADN Satélite/genética , Drosophila melanogaster/genética , Femenino , Masculino
7.
Nat Commun ; 10(1): 3682, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31417090

RESUMEN

Somatic mutations in the RNase IIIb domain of DICER1 arise in cancer and disrupt the cleavage of 5' pre-miRNA arms. Here, we characterize an unstudied, recurrent, mutation (S1344L) in the DICER1 RNase IIIa domain in tumors from The Cancer Genome Atlas (TCGA) project and MSK-IMPACT profiling. RNase IIIa/b hotspots are absent from most cancers, but are notably enriched in uterine cancers. Systematic analysis of TCGA small RNA datasets show that DICER1 RNase IIIa-S1344L tumors deplete 5p-miRNAs, analogous to RNase IIIb hotspot samples. Structural and evolutionary coupling analyses reveal constrained proximity of RNase IIIa-S1344 to the RNase IIIb catalytic site, rationalizing why mutation of this site phenocopies known hotspot alterations. Finally, examination of DICER1 hotspot endometrial tumors reveals derepression of specific miRNA target signatures. In summary, comprehensive analyses of DICER1 somatic mutations and small RNA data reveal a mechanistic aspect of pre-miRNA processing that manifests in specific cancer settings.


Asunto(s)
ARN Helicasas DEAD-box/genética , Neoplasias Endometriales/genética , MicroARNs/biosíntesis , Ribonucleasa III/genética , Bases de Datos Genéticas , Femenino , Humanos , MicroARNs/genética , Mutación
8.
Elife ; 72018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30543325

RESUMEN

During speciation, sex chromosomes often accumulate interspecific genetic incompatibilities faster than the rest of the genome. The drive theory posits that sex chromosomes are susceptible to recurrent bouts of meiotic drive and suppression, causing the evolutionary build-up of divergent cryptic sex-linked drive systems and, incidentally, genetic incompatibilities. To assess the role of drive during speciation, we combine high-resolution genetic mapping of X-linked hybrid male sterility with population genomics analyses of divergence and recent gene flow between the fruitfly species, Drosophila mauritiana and D. simulans. Our findings reveal a high density of genetic incompatibilities and a corresponding dearth of gene flow on the X chromosome. Surprisingly, we find that a known drive element recently migrated between species and, rather than contributing to interspecific divergence, caused a strong reduction in local sequence divergence, undermining the evolution of hybrid sterility. Gene flow can therefore mediate the effects of selfish genetic elements during speciation.


Asunto(s)
Evolución Biológica , Especiación Genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Drosophila/genética , Drosophila simulans/genética , Flujo Génico , Infertilidad Masculina/genética , Masculino , Meiosis/genética , Especificidad de la Especie
9.
Dev Cell ; 46(3): 316-326.e5, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30086302

RESUMEN

Intragenomic conflicts are fueled by rapidly evolving selfish genetic elements, which induce selective pressures to innovate opposing repressive mechanisms. This is patently manifest in sex-ratio (SR) meiotic drive systems, in which distorter and suppressor factors bias and restore equal transmission of X and Y sperm. Here, we reveal that multiple SR suppressors in Drosophila simulans (Nmy and Tmy) encode related hairpin RNAs (hpRNAs), which generate endo-siRNAs that repress the paralogous distorters Dox and MDox. All components in this drive network are recently evolved and largely testis restricted. To connect SR hpRNA function to the RNAi pathway, we generated D. simulans null mutants of Dcr-2 and AGO2. Strikingly, these core RNAi knockouts massively derepress Dox and MDox and are in fact completely male sterile and exhibit highly defective spermatogenesis. Altogether, our data reveal how the adaptive capacity of hpRNAs is critically deployed to restrict selfish gonadal genetic systems that can exterminate a species.


Asunto(s)
Células Germinativas/metabolismo , Meiosis/genética , Interferencia de ARN/fisiología , Espermatozoides/metabolismo , Animales , Proteínas Argonautas/genética , Drosophila , Proteínas de Drosophila/genética , Evolución Molecular , Masculino , ARN Helicasas/genética , ARN Interferente Pequeño/genética , Ribonucleasa III/genética
10.
Genes Dev ; 31(18): 1841-1846, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29051389

RESUMEN

Relatively little is known about the in vivo functions of newly emerging genes, especially in metazoans. Although prior RNAi studies reported prevalent lethality among young gene knockdowns, our phylogenomic analyses reveal that young Drosophila genes are frequently restricted to the nonessential male reproductive system. We performed large-scale CRISPR/Cas9 mutagenesis of "conserved, essential" and "young, RNAi-lethal" genes and broadly confirmed the lethality of the former but the viability of the latter. Nevertheless, certain young gene mutants exhibit defective spermatogenesis and/or male sterility. Moreover, we detected widespread signatures of positive selection on young male-biased genes. Thus, young genes have a preferential impact on male reproductive system function.


Asunto(s)
Drosophila melanogaster/genética , Fertilidad/genética , Genes Esenciales/fisiología , Genes de Insecto/fisiología , Reproducción/genética , Animales , Sistemas CRISPR-Cas/genética , Evolución Molecular , Mutación del Sistema de Lectura , Expresión Génica , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Letales/fisiología , Infertilidad Masculina/genética , Masculino , Filogenia , Interferencia de ARN , Espermatogénesis/genética , Testículo/anatomía & histología , Testículo/metabolismo
11.
Nat Commun ; 8: 15737, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28675155

RESUMEN

The conserved modification N6-methyladenosine (m6A) modulates mRNA processing and activity. Here, we establish the Drosophila system to study the m6A pathway. We first apply miCLIP to map m6A across embryogenesis, characterize its m6A 'writer' complex, validate its YTH 'readers' CG6422 and YT521-B, and generate mutants in five m6A factors. While m6A factors with additional roles in splicing are lethal, m6A-specific mutants are viable but present certain developmental and behavioural defects. Notably, m6A facilitates the master female determinant Sxl, since multiple m6A components enhance female lethality in Sxl sensitized backgrounds. The m6A pathway regulates Sxl processing directly, since miCLIP data reveal Sxl as a major intronic m6A target, and female-specific Sxl splicing is compromised in multiple m6A pathway mutants. YT521-B is a dominant m6A effector for Sxl regulation, and YT521-B overexpression can induce female-specific Sxl splicing. Overall, our transcriptomic and genetic toolkit reveals in vivo biologic function for the Drosophila m6A pathway.


Asunto(s)
Adenosina/análogos & derivados , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Procesos de Determinación del Sexo , Adenosina/química , Empalme Alternativo , Secuencias de Aminoácidos , Animales , Conducta Animal , Metilación de ADN , Proteínas de Drosophila/metabolismo , Femenino , Intrones , Masculino , Espectrometría de Masas , Modelos Genéticos , Familia de Multigenes , Mutagénesis , Mutación , Ovario/metabolismo , Fenotipo , ARN Mensajero/metabolismo , Transcriptoma
12.
BMC Evol Biol ; 15: 203, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26391223

RESUMEN

BACKGROUND: Whole-genome RNA interference post-transcriptional silencing (RNAi) is a widely used method for studying the phenotypic effects of knocking down individual genes. In this study, we use a population genomic approach to characterize the rate of evolution for proteins affecting 26 RNAi knockdown phenotypes in Drosophila melanogaster. RESULTS: We find that only two of the 26 RNAi knockdown phenotypes are enriched for rapidly evolving proteins: innate immunity and regulation of Hedgehog signaling. Among all genes associated with an RNAi knockdown phenotype, we note examples in which the adaptively evolving proteins play a well-defined role in a given molecular pathway. However, most adaptively evolving proteins are found to perform more general cellular functions. When RNAi phenotypes are grouped into categories according to cellular function, we find that genes involved in the greatest number of phenotypic categories are also significantly more likely to have a history of rapid protein evolution. CONCLUSIONS: We show that genes that have been demonstrated to have a measurable effect on multiple molecular phenotypes show higher rates of protein evolution than genes having an effect on a single category of phenotype. Defining pleiotropy in this way yields very different results than previous studies that define pleiotropy by the number of physical interactions, which show highly connected proteins tend to evolve more slowly than lowly connected proteins. We suggest that a high degree of pleiotropy may increase the likelihood of compensatory substitution, consistent with modern theoretical work on adaptation.


Asunto(s)
Drosophila melanogaster/genética , Selección Genética , Animales , Evolución Biológica , Técnicas de Silenciamiento del Gen , Pleiotropía Genética , Genoma de los Insectos , Genómica , Interferencia de ARN
14.
Genome Biol Evol ; 6(9): 2444-58, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25193308

RESUMEN

Drosophila mauritiana is an Indian Ocean island endemic species that diverged from its two sister species, Drosophila simulans and Drosophila sechellia, approximately 240,000 years ago. Multiple forms of incomplete reproductive isolation have evolved among these species, including sexual, gametic, ecological, and intrinsic postzygotic barriers, with crosses among all three species conforming to Haldane's rule: F(1) hybrid males are sterile and F(1) hybrid females are fertile. Extensive genetic resources and the fertility of hybrid females have made D. mauritiana, in particular, an important model for speciation genetics. Analyses between D. mauritiana and both of its siblings have shown that the X chromosome makes a disproportionate contribution to hybrid male sterility. But why the X plays a special role in the evolution of hybrid sterility in these, and other, species remains an unsolved problem. To complement functional genetic analyses, we have investigated the population genomics of D. mauritiana, giving special attention to differences between the X and the autosomes. We present a de novo genome assembly of D. mauritiana annotated with RNAseq data and a whole-genome analysis of polymorphism and divergence from ten individuals. Our analyses show that, relative to the autosomes, the X chromosome has reduced nucleotide diversity but elevated nucleotide divergence; an excess of recurrent adaptive evolution at its protein-coding genes; an excess of recent, strong selective sweeps; and a large excess of satellite DNA. Interestingly, one of two centimorgan-scale selective sweeps on the D. mauritiana X chromosome spans a region containing two sex-ratio meiotic drive elements and a high concentration of satellite DNA. Furthermore, genes with roles in reproduction and chromosome biology are enriched among genes that have histories of recurrent adaptive protein evolution. Together, these genome-wide analyses suggest that genetic conflict and frequent positive natural selection on the X chromosome have shaped the molecular evolutionary history of D. mauritiana, refining our understanding of the possible causes of the large X-effect in speciation.


Asunto(s)
Cromosomas de Insectos/genética , Drosophila/genética , Evolución Molecular , Variación Genética , Genoma de los Insectos , Animales , Drosophila/fisiología , Femenino , Especiación Genética , Genoma , Masculino , Modelos Genéticos , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA