Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 27(21): 2493-503, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24097406

RESUMEN

RATIONALE: The consumption of red meat is known to enhance the endogenous formation of N-nitroso compounds (NOCs), which are potent carcinogens. DNA damage related to NOCs, and hence red meat, has been detected in colorectal cells and in blood. We proposed to extend previous studies to a non-invasive approach for the detection of O(6)-carboxymethylguanine (O(6)CMG) and O(6)-carboxymethyl-2'-deoxyguanosine (O(6)CMdG) in urine in relation to red meat intake using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The presence of the adduct in urine samples either as the free base or as 2'-deoxynucleoside could help in determining the repair mechanism involved when such lesions are produced. A non-invasive assessment of DNA adducts could also allow for large-scale analyses in the population and cancer prevention dietary strategies. METHODS: An LC/MS/MS method for the quantitation of O(6)CMG and O(6)CMdG was developed. Urine samples collected from healthy volunteers on red meat and vegetarian diets were analysed either by direct injection or after purification by solid-phase extraction (SPE). A separate LC/MS/MS method for O(6)-methylguanine (O(6)MeG) and O(6)-methyl-2'-deoxyguanosine (O(6)MedG), which are possible hydrolysis products forming during the sample pre-treatment, was also developed. RESULTS: The developed LC/MS/MS method allowed the simultaneous measurement of O(6)CMG and O(6)CMdG. The limits of detection (LODs) were 0.38 ng/mL for O(6)CMG and 0.18 ng/mL for O(6)CMdG. The direct injection analysis of the clinical samples showed low sensitivity due to high background signal that was improved by SPE purification. However, the concentrations of the adducts in clinical samples were still found to be below the LOD. CONCLUSIONS: Novel, reproducible, and accurate LC/MS/MS methods were developed for the determination of the urinary content of O(6)CMG and O(6)CMdG, and of the possible formation of O(6)MeG and O(6)MedG by decarboxylation. Clinical samples from volunteers on different diets were analysed. Further studies are required to discover a link between the presence of these biomarkers in urine and red meat consumption.


Asunto(s)
Desoxiguanosina/análogos & derivados , Guanina/análogos & derivados , Espectrometría de Masas en Tándem/métodos , Animales , Cromatografía Liquida/métodos , Neoplasias Colorrectales/orina , Estudios Cruzados , Daño del ADN , Desoxiguanosina/orina , Dieta , Dieta Vegetariana , Guanina/orina , Humanos , Límite de Detección , Carne/análisis
2.
PLoS One ; 7(6): e37938, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719856

RESUMEN

Heparanase is an enzyme involved in extracellular matrix remodelling and heparan sulphate proteoglycan catabolism. It is secreted by metastatic tumour cells, allowing them to penetrate the endothelial cell layer and basement membrane to invade target organs. The release of growth factors at the site of cleaved heparan sulphate chains further enhance the potential of the tumour by encouraging the process of angiogenesis. This leads to increased survival and further proliferation of the tumour. Aptamers are single or double stranded oligonucleotides that recognise specific small molecules, peptides, proteins, or even cells or tissues and have shown great potential over the years as diagnostic and therapeutic agents in anticancer treatment. For the first time, single stranded DNA aptamers were successfully generated against the active heterodimer form of heparanase using a modified SELEX protocol, and eluted based on increasing affinity for the target. Sandwich ELISA assays showed recognition of heparanase by the aptamers at a site distinct from that of a polyclonal HPSE1 antibody. The binding affinities of aptamer to immobilised enzyme were high (7 × 10(7) to 8 × 10(7) M(-1)) as measured by fluorescence spectroscopy. Immunohistochemistry and immunofluorescence studies demonstrated that the aptamers were able to recognise heparanase with staining comparable or in some cases superior to that of the HPSE1 antibody control. Finally, matrigel assay demonstrated that aptamers were able to inhibit heparanase. This study provides clear proof of principle concept that nucleic acid aptamers can be generated against heparanase. These reagents may serve as useful tools to explore the functional role of the enzyme and in the future development of diagnostic assays or therapeutic reagents.


Asunto(s)
Aptámeros de Nucleótidos/genética , ADN de Cadena Simple/genética , Glucuronidasa/genética , Metástasis de la Neoplasia , Neovascularización Patológica , Aptámeros de Nucleótidos/química , Secuencia de Bases , ADN de Cadena Simple/química , Electroforesis en Gel de Agar , Ensayo de Inmunoadsorción Enzimática , Conformación de Ácido Nucleico , Técnica SELEX de Producción de Aptámeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA