Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 18(6): e1010514, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35675371

RESUMEN

A cascade of histone acetylation events with subsequent incorporation of a histone H2A variant plays an essential part in transcription regulation in various model organisms. A key player in this cascade is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic transcription units in the unicellular parasite Trypanosoma brucei has been shown to be highly dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase HAT2. The chromatin remodelling complex which mediates H2A.Z incorporation is not known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study, we identified and characterised an SWR1-like remodeller complex in T. brucei that is responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of potential SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211 amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily. Systematic protein-protein interaction analysis revealed the existence of a novel complex exhibiting key features of an SWR1-like chromatin remodeller. RNAi-mediated depletion of the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation at transcription start sites and a subsequent decrease of steady-state mRNA levels. Furthermore, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin condensation. The potential function of several proteins associated with the SWR1-like complex and with HAT2, the key factor of H2A.Z incorporation, is discussed.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Trypanosoma brucei brucei , Adenosina Trifosfatasas/metabolismo , Cromatina , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Nucleosomas , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
2.
mBio ; 12(6): e0135221, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34749530

RESUMEN

The parasite Trypanosoma brucei periodically changes the expression of protective variant surface glycoproteins (VSGs) to evade its host's immune system in a process known as antigenic variation. One route to change VSG expression is the transcriptional activation of a previously silent VSG expression site (ES), a subtelomeric region containing the VSG genes. Homologous recombination of a different VSG from a large reservoir into the active ES represents another route. The conserved histone methyltransferase DOT1B is involved in transcriptional silencing of inactive ES and influences ES switching kinetics. The molecular machinery that enables DOT1B to execute these regulatory functions remains elusive, however. To better understand DOT1B-mediated regulatory processes, we purified DOT1B-associated proteins using complementary biochemical approaches. We identified several novel DOT1B interactors. One of these was the RNase H2 complex, previously shown to resolve RNA-DNA hybrids, maintain genome integrity, and play a role in antigenic variation. Our study revealed that DOT1B depletion results in an increase in RNA-DNA hybrids, accumulation of DNA damage, and ES switching events. Surprisingly, a similar pattern of VSG deregulation was observed in RNase H2 mutants. We propose that both proteins act together in resolving R-loops to ensure genome integrity and contribute to the tightly regulated process of antigenic variation. IMPORTANCE Trypanosoma brucei is a unicellular parasite that causes devastating diseases like sleeping sickness in humans and the "nagana" disease in cattle in Africa. Fundamental to the establishment and prolongation of a trypanosome infection is the parasite's ability to escape the mammalian host's immune system by antigenic variation, which relies on periodic changes of a protein surface coat. The exact mechanisms, however, which mediate these changes are still elusive. In this work, we describe a novel protein complex consisting of the histone methyltransferase DOT1B and RNase H2 which is involved in antigenic variation.


Asunto(s)
Histona Metiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Ribonucleasa H/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis/parasitología , Variación Antigénica , Genoma de Protozoos , Inestabilidad Genómica , Histona Metiltransferasas/química , Histona Metiltransferasas/genética , Humanos , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Estructuras R-Loop , Ribonucleasa H/química , Ribonucleasa H/genética , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA