Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36991820

RESUMEN

IoT systems can successfully employ wireless sensor networks (WSNs) for data gathering and fog/edge computing for processing collected data and providing services. The proximity of edge devices to sensors improves latency, whereas cloud assets provide higher computational power when needed. Fog networks include various heterogeneous fog nodes and end-devices, some of which are mobile, such as vehicles, smartwatches, and cell phones, while others are static, such as traffic cameras. Therefore, some nodes in the fog network can be randomly organized, forming a self-organizing ad hoc structure. Moreover, fog nodes can have different resource constraints, such as energy, security, computational power, and latency. Therefore, two major problems arise in fog networks: ensuring optimal service (application) placement and determining the optimal path between the user end-device and the fog node that provides the services. Both problems require a simple and lightweight method that can rapidly identify a good solution using the constrained resources available in the fog nodes. In this paper, a novel two-stage multi-objective path optimization method is proposed that optimizes the data routing path between the end-device and fog node(s). A particle swarm optimization (PSO) method is used to determine the Pareto Frontier of alternative data paths, and then the analytical hierarchy process (AHP) is used to choose the best path alternative according to the application-specific preference matrix. The results show that the proposed method works with a wide range of objective functions that can be easily expanded. Moreover, the proposed method provides a whole set of alternative solutions and evaluates each of them, allowing us to choose the second- or third-best alternative if the first one is not suitable for some reason.

2.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36992074

RESUMEN

Microservices are compact, independent services that work together with other microservices to support a single application function. Organizations may quickly deliver high-quality applications using the effective design pattern of the application function. Microservices allow for the alteration of one service in an application without affecting the other services. Containers and serverless functions, two cloud-native technologies, are frequently used to create microservices applications. A distributed, multi-component program has a number of advantages, but it also introduces new security risks that are not present in more conventional monolithic applications. The objective is to propose a method for access control that ensures the enhanced security of microservices. The proposed method was experimentally tested and validated in comparison to the centralized and decentralized architectures of the microservices. The obtained results showed that the proposed method enhanced the security of decentralized microservices by distributing the access control responsibility across multiple microservices within the external authentication and internal authorization processes. This allows for easy management of permissions between microservices and can help prevent unauthorized access to sensitive data and resources, as well as reduce the risk of attacks on microservices.

3.
Sensors (Basel) ; 22(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35957450

RESUMEN

Fog computing is an extension of cloud computing that provides computing services closer to user end-devices at the network edge. One of the challenging topics in fog networks is the placement of tasks on fog nodes to obtain the best performance and resource usage. The process of mapping tasks for resource-constrained devices is known as the service or fog application placement problem (SPP, FAPP). The highly dynamic fog infrastructures with mobile user end-devices and constantly changing fog nodes resources (e.g., battery life, security level) require distributed/decentralized service placement (orchestration) algorithms to ensure better resilience, scalability, and optimal real-time performance. However, recently proposed service placement algorithms rarely support user end-device mobility, constantly changing the resource availability of fog nodes and the ability to recover from fog node failures at the same time. In this article, we propose a distributed agent-based orchestrator model capable of flexible service provisioning in a dynamic fog computing environment by considering the constraints on the central processing unit (CPU), memory, battery level, and security level of fog nodes. Distributing the decision-making to multiple orchestrator fog nodes instead of relying on the mapping of a single central entity helps to spread the load and increase scalability and, most importantly, resilience. The prototype system based on the proposed orchestrator model was implemented and tested with real hardware. The results show that the proposed model is efficient in terms of response latency and computational overhead, which are minimal compared to the placement algorithm itself. The research confirms that the proposed orchestrator approach is suitable for various fog network applications when scalability, mobility, and fault tolerance must be guaranteed.


Asunto(s)
Algoritmos , Nube Computacional , Atención a la Salud
4.
Sensors (Basel) ; 19(16)2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31431005

RESUMEN

Development of the Internet of Things (IoT) opens many new challenges. As IoT devices are getting smaller and smaller, the problems of so-called "constrained devices" arise. The traditional Internet protocols are not very well suited for constrained devices comprising localized network nodes with tens of devices primarily communicating with each other (e.g., various sensors in Body Area Network communicating with each other). These devices have very limited memory, processing, and power resources, so traditional security protocols and architectures also do not fit well. To address these challenges the Fog computing paradigm is used in which all constrained devices, or Edge nodes, primarily communicate only with less-constrained Fog node device, which collects all data, processes it and communicates with the outside world. We present a new lightweight secure self-authenticable transfer protocol (SSATP) for communications between Edge nodes and Fog nodes. The primary target of the proposed protocol is to use it as a secure transport for CoAP (Constrained Application Protocol) in place of UDP (User Datagram Protocol) and DTLS (Datagram Transport Layer Security), which are traditional choices in this scenario. SSATP uses modified header fields of standard UDP packets to transfer additional protocol handling and data flow management information as well as user data authentication information. The optional redundant data may be used to provide increased resistance to data losses when protocol is used in unreliable networks. The results of experiments presented in this paper show that SSATP is a better choice than UDP with DTLS in the cases, where the CoAP block transfer mode is used and/or in lossy networks.

5.
Sensors (Basel) ; 19(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067769

RESUMEN

The ability to precisely locate and navigate a partially impaired or a blind person within a building is increasingly important for a wide variety of public safety and localization services. In this paper, we explore indoor localization algorithms using Bluetooth Low Energy (BLE) beacons. We propose using the BLE beacon's received signal strength indication (RSSI) and the geometric distance from the current beacon to the fingerprint point in the framework of fuzzy logic for calculating the Euclidean distance for the subsequent determination of location. According to our results, the fingerprinting algorithm with fuzzy logic type-2 (hesitant fuzzy sets) is fit for use as an indoor localization method with BLE beacons. The average error of localization is only 0.43 m, and the algorithm obtains a navigation precision of 98.2 ± 1%. This precision confirms that the algorithms provide great aid to a visually impaired person in unknown spaces, especially those designed without physical tactile guides, as confirmed by low Fréchet and Hausdorff distance values and high navigation efficiency index (NEI) scores.


Asunto(s)
Lógica Difusa , Navegación Espacial/fisiología , Personas con Daño Visual , Tecnología Inalámbrica , Adulto , Algoritmos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
6.
Sensors (Basel) ; 18(5)2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29757988

RESUMEN

The Internet of Things (IoT) introduces many new challenges which cannot be solved using traditional cloud and host computing models. A new architecture known as fog computing is emerging to address these technological and security gaps. Traditional security paradigms focused on providing perimeter-based protections and client/server point to point protocols (e.g., Transport Layer Security (TLS)) are no longer the best choices for addressing new security challenges in fog computing end devices, where energy and computational resources are limited. In this paper, we present a lightweight secure streaming protocol for the fog computing "Fog Node-End Device" layer. This protocol is lightweight, connectionless, supports broadcast and multicast operations, and is able to provide data source authentication, data integrity, and confidentiality. The protocol is based on simple and energy efficient cryptographic methods, such as Hash Message Authentication Codes (HMAC) and symmetrical ciphers, and uses modified User Datagram Protocol (UDP) packets to embed authentication data into streaming data. Data redundancy could be added to improve reliability in lossy networks. The experimental results summarized in this paper confirm that the proposed method efficiently uses energy and computational resources and at the same time provides security properties on par with the Datagram TLS (DTLS) standard.

7.
Sensors (Basel) ; 16(5)2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27187394

RESUMEN

This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application.


Asunto(s)
Redes de Comunicación de Computadores , Cuerpo Humano , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA