Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Genet ; 10: 254, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984242

RESUMEN

The 4G family of eukaryotic mRNA translation initiation factors is composed of three members (eIF4GI, eIF4GII, and DAP5). Their specific roles in translation initiation are under intense investigations, but how their respective intracellular amounts are controlled remains poorly understood. Here we show that eIF4GI and eIF4GII exhibit much shorter half-lives than that of DAP5. Both eIF4GI and eIF4GII proteins, but not DAP5, contain computer-predicted PEST motifs in their N-termini conserved across the animal kingdom. They are both sensitive to degradation by the proteasome. Under normal conditions, eIF4GI and eIF4GII are protected from proteasomal destruction through binding to the detoxifying enzyme NQO1 [NAD(P)H:quinone oxidoreductase]. However, when cells are exposed to oxidative stress both eIF4GI and eIF4GII, but not DAP5, are degraded by the proteasome in an N-terminal-dependent manner, and cell viability is more compromised upon silencing of DAP5. These findings indicate that the three eIF4G proteins are differentially regulated by the proteasome and that persistent DAP5 plays a role in cell survival upon oxidative stress.

2.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541862

RESUMEN

XBP1 is a stress-regulated transcription factor also involved in mammalian host defenses and innate immune response. Our investigation of XBP1 RNA splicing during rotavirus infection revealed that an additional XBP1 RNA (XBP1es) that corresponded to exon skipping in the XBP1 pre-RNA is induced depending on the rotavirus strain used. We show that the translation product of XBP1es (XBP1es) has trans-activation properties similar to those of XBP1 on ER stress response element (ERSE) containing promoters. Using monoreassortant between ES+ ("skipping") and ES- ("nonskipping") strains of rotavirus, we show that gene 7 encoding the viral translation enhancer NSP3 is involved in this phenomenon and that exon skipping parallels the nuclear relocalization of cytoplasmic PABP. We further show, using recombinant rotaviruses carrying chimeric gene 7, that the ES+ phenotype is linked to the eIF4G-binding domain of NSP3. Because the XBP1 transcription factor is involved in stress and immunological responses, our results suggest an alternative way to activate XBP1 upon viral infection or nuclear localization of PABP.IMPORTANCE Rotavirus is one of the most important pathogens causing severe gastroenteritis in young children worldwide. Here we show that infection with several rotavirus strains induces an alternative splicing of the RNA encoding the stressed-induced transcription factor XBP1. The genetic determinant of XBP1 splicing is the viral RNA translation enhancer NSP3. Since XBP1 is involved in cellular stress and immune responses and since the XBP1 protein made from the alternatively spliced RNA is an active transcription factor, our observations raise the question of whether alternative splicing is a cellular response to rotavirus infection.


Asunto(s)
Empalme Alternativo/genética , ARN Mensajero/genética , Rotavirus/genética , Proteínas no Estructurales Virales/genética , Proteína 1 de Unión a la X-Box/genética , Animales , Línea Celular , Proteínas de Unión al ADN/metabolismo , Humanos , Macaca mulatta , Proteínas de Unión a Poli(A)/genética , Dominios Proteicos/genética , ARN Viral/genética , Infecciones por Rotavirus/patología
3.
PLoS One ; 11(1): e0145998, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26727111

RESUMEN

Rotavirus NSP3 is a translational surrogate of the PABP-poly(A) complex for rotavirus mRNAs. To further explore the effects of NSP3 and untranslated regions (UTRs) on rotavirus mRNAs translation, we used a quantitative in vivo assay with simultaneous cytoplasmic NSP3 expression (wild-type or deletion mutant) and electroporated rotavirus-like and standard synthetic mRNAs. This assay shows that the last four GACC nucleotides of viral mRNA are essential for efficient translation and that both the NSP3 eIF4G- and RNA-binding domains are required. We also show efficient translation of rotavirus-like mRNAs even with a 5'UTR as short as 5 nucleotides, while more than eleven nucleotides are required for the 3'UTR. Despite the weak requirement for a long 5'UTR, a good AUG environment remains a requirement for rotavirus mRNAs translation.


Asunto(s)
Regiones no Traducidas 3' , Regiones no Traducidas 5' , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas no Estructurales Virales/fisiología , Animales , Secuencia de Bases , Línea Celular , Cricetinae , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Ácido Nucleico , Transcripción Genética , Proteínas no Estructurales Virales/genética
4.
J Virol ; 89(17): 8773-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26063427

RESUMEN

UNLABELLED: Through its interaction with the 5' translation initiation factor eIF4G, poly(A) binding protein (PABP) facilitates the translation of 5'-capped and 3'-poly(A)-tailed mRNAs. Rotavirus mRNAs are capped but not polyadenylated, instead terminating in a 3' GACC motif that is recognized by the viral protein NSP3, which competes with PABP for eIF4G binding. Upon rotavirus infection, viral, GACC-tailed mRNAs are efficiently translated, while host poly(A)-tailed mRNA translation is, in contrast, severely impaired. To explore the roles of NSP3 in these two opposing events, the translational capabilities of three capped mRNAs, distinguished by either a GACC, a poly(A), or a non-GACC and nonpoly(A) 3' end, have been monitored after electroporation of cells expressing all rotavirus proteins (infected cells) or only NSP3 (stably or transiently transfected cells). In infected cells, we found that the magnitudes of translation induction (GACC-tailed mRNA) and translation reduction [poly(A)-tailed mRNA] both depended on the rotavirus strain used but that translation reduction not genetically linked to NSP3. In transfected cells, even a small amount of NSP3 was sufficient to dramatically enhance GACC-tailed mRNA translation and, surprisingly, to slightly favor the translation of both poly(A)- and nonpoly(A)-tailed mRNAs, likely by stabilizing the eIF4E-eIF4G interaction. These data suggest that NSP3 is a translational surrogate of the PABP-poly(A) complex; therefore, it cannot by itself be responsible for inhibiting the translation of host poly(A)-tailed mRNAs upon rotavirus infection. IMPORTANCE: To control host cell physiology and to circumvent innate immunity, many viruses have evolved powerful mechanisms aimed at inhibiting host mRNA translation while stimulating translation of their own mRNAs. How rotavirus tackles this challenge is still a matter of debate. Using rotavirus-infected cells, we show that the magnitude of cellular poly(A) mRNA translation differs with respect to rotavirus strains but is not genetically linked to NSP3. Using cells expressing rotavirus NSP3, we show that NSP3 alone not only dramatically enhances rotavirus-like mRNA translation but also enhances poly(A) mRNA translation rather than inhibiting it, likely by stabilizing the eIF4E-eIF4G complex. Thus, the inhibition of cellular polyadenylated mRNA translation during rotavirus infection cannot be attributed solely to NSP3 and is more likely the result of global competition between viral and host mRNAs for the cellular translation machinery.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Cricetinae , Electroporación , Células HeLa , Humanos , Macaca mulatta , Poli A/genética , Poliadenilación/genética , Unión Proteica/genética , ARN Mensajero/genética , ARN Viral/genética , Rotavirus/genética , Infecciones por Rotavirus/virología , Transfección
5.
Virus Res ; 176(1-2): 144-54, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23796411

RESUMEN

The complete coding sequences of the four unassigned temperature-sensitive (ts) Baylor prototype rotavirus mutants (SA11ts D, H, I and J) were sequenced by deep sequencing double-stranded RNA using RNA-seq. Non-silent mutations were assigned to a specific mutant by Sanger sequencing RT-PCR products from each mutant. Mutations that led to amino acid changes were found in all genes except for genes 1 (VP1), 10 (NSP4) and 11 (NSP5/6). Based on these sequence analyses and earlier genetic analyses, the ts mutations in gene 7, which encodes the protein NSP3, were assigned to ts mutant groups I and H, and confirmed by an in vitro RNA-binding assay with recombinant proteins. In addition, ts mutations in gene 6 were assigned to tsJ. The presence of non-conservative mutations in two genes of two mutants (genes 4 and 2 in tsD and genes 3 and 7 in tsH) underscores the necessity of sequencing the whole genome of each rotavirus ts mutant prototype.


Asunto(s)
Mutación Missense , Rotavirus/genética , Rotavirus/efectos de la radiación , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Replicación Viral/efectos de la radiación , Análisis Mutacional de ADN , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Datos de Secuencia Molecular , ARN Viral/genética , Rotavirus/fisiología , Temperatura , Proteínas no Estructurales Virales/metabolismo
6.
J Virol ; 84(13): 6711-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20427539

RESUMEN

Group A rotaviruses (RV), members of the Reoviridae family, are a major cause of infantile acute gastroenteritis. The RV genome consists of 11 double-stranded RNA segments. In some cases, an RNA segment is replaced by a rearranged RNA segment, which is derived from its standard counterpart by partial sequence duplication. We report here a reverse genetics system for RV based on the preferential packaging of rearranged RNA segments. Using this system, wild-type or in vitro-engineered forms of rearranged segment 7 from a human rotavirus (encoding the NSP3 protein), derived from cloned cDNAs and transcribed in the cytoplasm of COS-7 cells with the help of T7 RNA polymerase, replaced the wild-type segment 7 of a bovine helper virus (strain RF). Recombinant RF viruses (i.e., engineered monoreassortant RF viruses) containing an exogenous rearranged RNA were recovered by propagating the viral progeny in MA-104 cells, with no need for additional selective pressure. Our findings offer the possibility to extend RV reverse genetics to segments encoding nonstructural or structural proteins for which no potent selective tools, such as neutralizing antibodies, are available. In addition, the system described here is the first to enable the introduction of a mutated gene expressing a modified nonstructural protein into an infectious RV. This reverse genetics system offers new perspectives for investigating RV protein functions and developing recombinant live RV vaccines containing specific changes targeted for attenuation.


Asunto(s)
Ingeniería Genética/métodos , Genética Microbiana/métodos , ARN Viral/genética , Rotavirus/genética , Virología/métodos , Animales , Células COS , Chlorocebus aethiops , Clonación Molecular , ADN Complementario/genética , Expresión Génica , Virus Helper , Recombinación Genética , Rotavirus/fisiología , Transcripción Genética , Ensamble de Virus
7.
J Virol ; 82(22): 11283-93, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18799579

RESUMEN

Rotavirus nonstructural protein NSP3 interacts specifically with the 3' end of viral mRNAs, with the eukaryotic translation initiation factor eIF4G, and with RoXaN, a cellular protein of yet-unknown function. By evicting cytoplasmic poly(A) binding protein (PABP-C1) from translation initiation complexes, NSP3 shuts off the translation of cellular polyadenylated mRNAs. We show here that PABP-C1 evicted from eIF4G by NSP3 accumulates in the nucleus of rotavirus-infected cells. Through modeling of the NSP3-RoXaN complex, we have identified mutations in NSP3 predicted to interrupt its interaction with RoXaN without disturbing the NSP3 interaction with eIF4G. Using these NSP3 mutants and a deletion mutant unable to associate with eIF4G, we show that the nuclear localization of PABP-C1 not only is dependent on the capacity of NSP3 to interact with eIF4G but also requires the interaction of NSP3 with a specific region in RoXaN, the leucine- and aspartic acid-rich (LD) domain. Furthermore, we show that the RoXaN LD domain functions as a nuclear export signal and that RoXaN tethers PABP-C1 with RNA. This work identifies RoXaN as a cellular partner of NSP3 involved in the nucleocytoplasmic localization of PABP-C1.


Asunto(s)
Factor 4G Eucariótico de Iniciación/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Mapeo de Interacción de Proteínas , Proteínas de Unión al ARN/metabolismo , Rotavirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Haplorrinos , Humanos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Eliminación de Secuencia
8.
EMBO J ; 23(20): 4072-81, 2004 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-15372078

RESUMEN

Rotavirus, a cause of severe gastroenteritis, contains a segmented double-stranded (ds)RNA genome that replicates using viral mRNAs as templates. The highly conserved 3'-consensus sequence (3'CS), UGUGACC, of the mRNAs promotes dsRNA synthesis and enhances translation. We have found that the 3'CS of the gene (g5) encoding NSP1, an antagonist of interferon signaling, undergoes rapid mutation when rhesus rotavirus (RRV) is serially passaged at high multiplicity of infection (MOI) in cells permitting high titer growth. These mutations increase the promoter activity of the g5 3'-sequence, but decrease its activity as a translation enhancer. The location of the mutations defines the minimal essential promoter for dsRNA synthesis as URN0-5CC. Under passage conditions where cell-to-cell spread of the virus is required to complete infection (low MOI), the 3'CS is retained due to the need for NSP1 to be expressed at levels sufficient to prevent establishment of the antiviral state. These data demonstrate that host cell type and propagation conditions affect the capacity of RRV to produce the virulence gene product NSP1, an important consideration in producing RRV-based vaccines.


Asunto(s)
Genoma Viral , Mutación , Rotavirus/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Secuencia de Consenso/genética , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Regulación Viral de la Expresión Génica , Variación Genética , Modelos Biológicos , Plásmidos , Regiones Promotoras Genéticas , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Rotavirus/fisiología , Pase Seriado , Ensayo de Placa Viral , Replicación Viral
9.
J Virol ; 78(8): 3851-62, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15047801

RESUMEN

Rotavirus mRNAs are capped but not polyadenylated, and viral proteins are translated by the cellular translation machinery. This is accomplished through the action of the viral nonstructural protein NSP3, which specifically binds the 3' consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G I. To further our understanding of the role of NSP3 in rotavirus replication, we looked for other cellular proteins capable of interacting with this viral protein. Using the yeast two-hybrid assay, we identified a novel cellular protein-binding partner for rotavirus NSP3. This 110-kDa cellular protein, named RoXaN (rotavirus X protein associated with NSP3), contains a minimum of three regions predicted to be involved in protein-protein or nucleic acid-protein interactions. A tetratricopeptide repeat region, a protein-protein interaction domain most often found in multiprotein complexes, is present in the amino-terminal region. In the carboxy terminus, at least five zinc finger motifs are observed, further suggesting the capacity of RoXaN to bind other proteins or nucleic acids. Between these two regions exists a paxillin leucine-aspartate repeat (LD) motif which is involved in protein-protein interactions. RoXaN is capable of interacting with NSP3 in vivo and during rotavirus infection. Domains of interaction were mapped and correspond to the dimerization domain of NSP3 (amino acids 163 to 237) and the LD domain of RoXaN (amino acids 244 to 341). The interaction between NSP3 and RoXaN does not impair the interaction between NSP3 and eIF4G I, and a ternary complex made of NSP3, RoXaN, and eIF4G I can be detected in rotavirus-infected cells, implicating RoXaN in translation regulation.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Rotavirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Línea Celular , ADN Complementario/genética , Factor 4G Eucariótico de Iniciación , Evolución Molecular , Expresión Génica , Humanos , Sustancias Macromoleculares , Complejos Multiproteicos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Rotavirus/genética , Rotavirus/patogenicidad , Infecciones por Rotavirus/genética , Infecciones por Rotavirus/metabolismo , Infecciones por Rotavirus/virología , Técnicas del Sistema de Dos Híbridos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas Virales/química , Proteínas Virales/genética , Dedos de Zinc
10.
Virology ; 313(1): 261-73, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12951038

RESUMEN

The rotavirus nonstructural protein NSP2 self-assembles into stable octameric structures that possess nonspecific affinity for single-stranded (ss)RNA and RNA-RNA helix-destabilizing and NTPase activities. Furthermore, NSP2 is a component of replication intermediates with replicase activity and plays a critical role in the packaging and replication of the segmented dsRNA genome of rotavirus. To better understand the function of the protein in genome replication, we examined the effect that purified recombinant NSP2 had on the synthesis of dsRNA by the open core replication system. The results showed that NSP2 inhibited the synthesis of dsRNA from viral mRNA in vitro, in a concentration-dependent manner. The inhibition was overcome by adding increasing amounts of viral mRNA or nonviral ssRNA to the system, indicating that the inhibition was mediated by the nonspecific RNA-binding activity of NSP2. Further analysis revealed that NSP2 interfered with the ability of the open core proteins, GTP, and viral mRNA to form the initiation complex for (-) strand synthesis. Additional experiments indicated that NSP2 did not perturb recognition of viral mRNA by the viral RNA polymerase VP1, but rather interfered with the function of VP2, a protein that is essential for (-) strand initiation and dsRNA synthesis and that forms the T = 1 lattice of the virion core. In contrast to initiation, NSP2 did not inhibit (-) strand elongation. Collectively, the findings provide evidence that the temporal order of interaction of RNA-binding proteins with viral mRNA is a crucial factor impacting the formation of replication intermediates.


Asunto(s)
Proteínas de la Cápside/metabolismo , ARN Bicatenario/biosíntesis , ARN Viral/biosíntesis , Proteínas de Unión al ARN/metabolismo , Rotavirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Guanosina Trifosfato/metabolismo , Unión Proteica , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/biosíntesis , Proteínas Recombinantes/metabolismo , Rotavirus/genética , Proteínas del Núcleo Viral/metabolismo , Proteínas no Estructurales Virales/biosíntesis , Replicación Viral
11.
J Virol ; 76(10): 5291-9, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11967345

RESUMEN

Phosphoprotein NSP5 is a component of replication intermediates that catalyze the synthesis of the segmented double-stranded RNA (dsRNA) rotavirus genome. To study the role of the protein in viral replication, His-tagged NSP5 was expressed in bacteria and purified by affinity chromatography. In vitro phosphorylation assays showed that NSP5 alone contains minimal autokinase activity but undergoes hyperphosphorylation when combined with the NTPase and helix-destabilizing protein NSP2. Hence, NSP2 mediates the hyperphosphorylation of NSP5 in the absence of other viral or cellular proteins. RNA-binding assays demonstrated that NSP5 has unique nonspecific RNA-binding activity, recognizing single-stranded RNA and dsRNA with similar affinities. The possible functions of the RNA-binding activities of NSP5 are to cooperate with NSP2 in the destabilization of RNA secondary structures and in the packaging of RNA and/or to prevent the interferon-induced dsRNA-dependent activation of the protein kinase PKR.


Asunto(s)
ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Rotavirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Ácido Anhídrido Hidrolasas/metabolismo , Clonación Molecular , Nucleósido-Trifosfatasa , Fosforilación , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas no Estructurales Virales/biosíntesis , Proteínas no Estructurales Virales/genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA