Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37107199

RESUMEN

Xanthine oxidase (XO) is a flavoprotein catalysing the oxidation of hypoxanthine to xanthine and then to uric acid, while simultaneously producing reactive oxygen species. Altered functions of XO may lead to severe pathological diseases, including gout-causing hyperuricemia and oxidative damage of tissues. These findings prompted research studies aimed at targeting the activity of this crucial enzyme. During the course of a virtual screening study aimed at the discovery of novel inhibitors targeting another oxidoreductase, superoxide dismutase, we identified four compounds with non-purine-like structures, namely ALS-1, -8, -15 and -28, that were capable of causing direct inhibition of XO. The kinetic studies of their inhibition mechanism allowed a definition of these compounds as competitive inhibitors of XO. The most potent molecule was ALS-28 (Ki 2.7 ± 1.5 µM), followed by ALS-8 (Ki 4.5 ± 1.5 µM) and by the less potent ALS-15 (Ki 23 ± 9 µM) and ALS-1 (Ki 41 ± 14 µM). Docking studies shed light on the molecular basis of the inhibitory activity of ALS-28, which hinders the enzyme cavity channel for substrate entry consistently with the competitive mechanism observed in kinetic studies. Moreover, the structural features emerging from the docked poses of ALS-8, -15 and -1 may explain the lower inhibition power with respect to ALS-28. All these structurally unrelated compounds represent valuable candidates for further elaboration into promising lead compounds.

2.
J Enzyme Inhib Med Chem ; 35(1): 1866-1878, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32990107

RESUMEN

The dual phosphatases CDC25 are involved in cell cycle regulation and overexpressed in many tumours, including melanoma. CDC25 is a promising target for discovering anticancer drugs, and several studies focussed on characterisation of quinonoid CDC25 inhibitors, frequently causing undesired side toxic effects. Previous work described an optimisation of the inhibition properties by naphthylphenylamine (NPA) derivatives of NSC28620, a nonquinonoid CDC25 inhibitor. Now, the CDC25B•inhibitor interaction was investigated through fluorescence studies, shedding light on the different inhibition mechanism exerted by NPA derivatives. Among the molecular processes, mediating the specific and high cytotoxicity of one NPA derivative in melanoma cells, we observed decrease of phosphoAkt, increase of p53, reduction of CDC25 forms, cytochrome c cytosolic translocation and increase of caspase activity, that lead to the activation of an apoptotic programme. A basic knowledge on CDC25 inhibitors is relevant for discovering potent bioactive molecules, to be used as anticancer agents against the highly aggressive melanoma.


Asunto(s)
Compuestos de Anilina/química , Antineoplásicos/química , Inhibidores Enzimáticos/química , Melanoma/tratamiento farmacológico , Fosfatasas cdc25/antagonistas & inhibidores , Secuencia de Aminoácidos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Humanos , Mutación , Imagen Óptica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA