Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cancer Cell ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39366373

RESUMEN

Gliomas exhibit significant molecular diversity and poor prognosis. In this issue of Cancer Cell, Curry et al. apply Patch-seq on human glioma samples uncovering hybrid cells with glial and neuronal features, capable of firing action potentials in isocitrate dehydrogenase mutant gliomas. These findings highlight the importance of neural features in tumor biology and progression.

2.
Immunity ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39368486

RESUMEN

To improve immunotherapy for brain tumors, it is important to determine the principal intracranial site of T cell recruitment from the bloodstream and their intracranial route to brain tumors. Using intravital microscopy in mouse models of intracranial melanoma, we discovered that circulating T cells preferably adhered and extravasated at a distinct type of venous blood vessel in the tumor vicinity, peritumoral venous vessels (PVVs). Other vascular structures were excluded as alternative T cell routes to intracranial melanomas. Anti-PD-1/CTLA-4 immune checkpoint inhibitors increased intracranial T cell motility, facilitating migration from PVVs to the tumor and subsequently inhibiting intracranial tumor growth. The endothelial adhesion molecule ICAM-1 was particularly expressed on PVVs, and, in samples of human brain metastases, ICAM-1 positivity of PVV-like vessels correlated with intratumoral T cell infiltration. These findings uncover a distinct mechanism by which the immune system can access and control brain tumors and potentially influence other brain pathologies.

3.
Nat Commun ; 15(1): 7383, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256378

RESUMEN

Intravital 2P-microscopy enables the longitudinal study of brain tumor biology in superficial mouse cortex layers. Intravital microscopy of the white matter, an important route of glioblastoma invasion and recurrence, has not been feasible, due to low signal-to-noise ratios and insufficient spatiotemporal resolution. Here, we present an intravital microscopy and artificial intelligence-based analysis workflow (Deep3P) that enables longitudinal deep imaging of glioblastoma up to a depth of 1.2 mm. We find that perivascular invasion is the preferred invasion route into the corpus callosum and uncover two vascular mechanisms of glioblastoma migration in the white matter. Furthermore, we observe morphological changes after white matter infiltration, a potential basis of an imaging biomarker during early glioblastoma colonization. Taken together, Deep3P allows for a non-invasive intravital investigation of brain tumor biology and its tumor microenvironment at subcortical depths explored, opening up opportunities for studying the neuroscience of brain tumors and other model systems.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Microscopía Intravital , Microambiente Tumoral , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Microscopía Intravital/métodos , Ratones , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Línea Celular Tumoral , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Invasividad Neoplásica
4.
J Magn Reson Imaging ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177509

RESUMEN

BACKGROUND: Gliomas are highly invasive brain neoplasms. MRI is the most important tool to diagnose and monitor glioma but has shortcomings. In particular, the assessment of tumor cell invasion is insufficient. This is a clinical dilemma, as recurrence can arise from MRI-occult glioma cell invasion. HYPOTHESIS: Tumor cell invasion, tumor growth and radiotherapy alter the brain parenchymal microstructure and thus are assessable by diffusion tensor imaging (DTI) and MR elastography (MRE). STUDY TYPE: Experimental, animal model. ANIMAL MODEL: Twenty-three male NMRI nude mice orthotopically implanted with S24 patient-derived glioma cells (experimental mice) and 9 NMRI nude mice stereotactically injected with 1 µL PBS (sham-injected mice). FIELD STRENGTH/SEQUENCE: 2D and 3D T2-weighted rapid acquisition with refocused echoes (RARE), 2D echo planar imaging (EPI) DTI, 2D multi-slice multi-echo (MSME) T2 relaxometry, 3D MSME MRE at 900 Hz acquired at 9.4 T (675 mT/m gradient strength). ASSESSMENT: Longitudinal 4-weekly imaging was performed for up to 4 months. Tumor volume was assessed in experimental mice (n = 10 treatment-control, n = 13 radiotherapy). The radiotherapy subgroup and 5 sham-injected mice underwent irradiation (3 × 6 Gy) 9 weeks post-implantation/sham injection. MRI-/MRE-parameters were assessed in the corpus callosum and tumor core/injection tract. Imaging data were correlated to light sheet microscopy (LSM) and histology. STATISTICAL TESTS: Paired and unpaired t-tests, a P-value ≤0.05 was considered significant. RESULTS: From week 4 to 8, a significant callosal stiffening (4.44 ± 0.22 vs. 5.31 ± 0.29 kPa) was detected correlating with LSM-proven tumor cell invasion. This was occult to all other imaging metrics. Histologically proven tissue destruction in the tumor core led to an increased T2 relaxation time (41.65 ± 0.34 vs. 44.83 ± 0.66 msec) and ADC (610.2 ± 12.27 vs. 711.2 ± 13.42 × 10-6 mm2/s) and a softening (5.51 ± 0.30 vs. 4.24 ± 0.29 kPa) from week 8 to 12. Radiotherapy slowed tumor progression. DATA CONCLUSION: MRE is promising for the assessment of key glioma characteristics. EVIDENCE LEVEL: NA TECHNICAL EFFICACY: Stage 2.

5.
Cancer Cell ; 42(6): 936-938, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38821062

RESUMEN

Cellular mechanisms mediating immunotherapy resistances are incompletely understood. In this issue, Li et al. reveal how breast cancer hijacks neuronal mechanisms of neuroprotection to shield itself from the immune system. Secretion of N-acetylaspartate impairs immune synapse formation in both neuroinflammation and breast cancer models, paving the way for novel therapeutic approaches.


Asunto(s)
Neoplasias de la Mama , Neuronas , Humanos , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Femenino , Neuronas/metabolismo , Neuronas/inmunología , Sistema Inmunológico/inmunología , Animales
6.
Cancer Discov ; 14(4): 669-673, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571430

RESUMEN

SUMMARY: The field of cancer neuroscience has begun to define the contributions of nerves to cancer initiation and progression; here, we highlight the future directions of basic and translational cancer neuroscience for malignancies arising outside of the central nervous system.


Asunto(s)
Neoplasias , Neurociencias , Humanos , Sistema Nervioso Central , Predicción , Proteómica
7.
Nat Commun ; 15(1): 968, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320988

RESUMEN

Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients' prognosis, and serves as a robust prognostic biomarker.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioma/genética , Neoplasias Encefálicas/genética , Proteína 1 Similar a Quitinasa-3
8.
BMC Cancer ; 24(1): 135, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279087

RESUMEN

BACKGROUND: Glioblastoma is the most frequent and a particularly malignant primary brain tumor with no efficacy-proven standard therapy for recurrence. It has recently been discovered that excitatory synapses of the AMPA-receptor subtype form between non-malignant brain neurons and tumor cells. This neuron-tumor network connectivity contributed to glioma progression and could be efficiently targeted with the EMA/FDA approved antiepileptic AMPA receptor inhibitor perampanel in preclinical studies. The PerSurge trial was designed to test the clinical potential of perampanel to reduce tumor cell network connectivity and tumor growth with an extended window-of-opportunity concept. METHODS: PerSurge is a phase IIa clinical and translational treatment study around surgical resection of progressive or recurrent glioblastoma. In this multicenter, 2-arm parallel-group, double-blind superiority trial, patients are 1:1 randomized to either receive placebo or perampanel (n = 66 in total). It consists of a treatment and observation period of 60 days per patient, starting 30 days before a planned surgical resection, which itself is not part of the study interventions. Only patients with an expected safe waiting interval are included, and a safety MRI is performed. Tumor cell network connectivity from resected tumor tissue on single cell transcriptome level as well as AI-based assessment of tumor growth dynamics in T2/FLAIR MRI scans before resection will be analyzed as the co-primary endpoints. Secondary endpoints will include further imaging parameters such as pre- and postsurgical contrast enhanced MRI scans, postsurgical T2/FLAIR MRI scans, quality of life, cognitive testing, overall and progression-free survival as well as frequency of epileptic seizures. Further translational research will focus on additional biological aspects of neuron-tumor connectivity. DISCUSSION: This trial is set up to assess first indications of clinical efficacy and tolerability of perampanel in recurrent glioblastoma, a repurposed drug which inhibits neuron-glioma synapses and thereby glioblastoma growth in preclinical models. If perampanel proved to be successful in the clinical setting, it would provide the first evidence that interference with neuron-cancer interactions may indeed lead to a benefit for patients, which would lay the foundation for a larger confirmatory trial in the future. TRIAL REGISTRATION: EU-CT number: 2023-503938-52-00 30.11.2023.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/cirugía , Calidad de Vida , Recurrencia Local de Neoplasia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Nitrilos/uso terapéutico , Piridonas/uso terapéutico , Resultado del Tratamiento , Método Doble Ciego
9.
Nervenarzt ; 95(2): 96-103, 2024 Feb.
Artículo en Alemán | MEDLINE | ID: mdl-38157044

RESUMEN

Recent research indicates that glioblastomas exhibit different neural properties that successfully promote tumor growth, colonize the brain and resist standard treatment. This opens up opportunities for new therapeutic strategies giving rise to the new research field of cancer neuroscience at the interface between oncology and neuroscience. It has been observed that glioblastomas as well as other incurable brain tumor entities, form multicellular tumor networks through long cell projections called tumor microtubes that are molecularly controlled by neuronal developmental mechanisms. These networks provide the tumor with efficient communication and resilience to external perturbations and are tumor-intrinsic continuously activated by pacemaker-like tumor cells. In addition, neuron-tumor networks have been discovered that also exploit direct glutamatergic synaptic contacts between nerve cells and tumor cells. These different neuronal mechanisms of the glioblastoma networks contribute to malignancy and resistance, which is why strategies to separate these multicellular networks were developed and are currently being investigated in initial clinical trials with respect to their therapeutic suitability.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Encéfalo/patología , Neuronas
10.
JAMA Netw Open ; 6(12): e2346721, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38060223

RESUMEN

Importance: Recent advancements in large language models (LLMs) have shown potential in a wide array of applications, including health care. While LLMs showed heterogeneous results across specialized medical board examinations, the performance of these models in neurology board examinations remains unexplored. Objective: To assess the performance of LLMs on neurology board-style examinations. Design, Setting, and Participants: This cross-sectional study was conducted between May 17 and May 31, 2023. The evaluation utilized a question bank approved by the American Board of Psychiatry and Neurology and was validated with a small question cohort by the European Board for Neurology. All questions were categorized into lower-order (recall, understanding) and higher-order (apply, analyze, synthesize) questions based on the Bloom taxonomy for learning and assessment. Performance by LLM ChatGPT versions 3.5 (LLM 1) and 4 (LLM 2) was assessed in relation to overall scores, question type, and topics, along with the confidence level and reproducibility of answers. Main Outcomes and Measures: Overall percentage scores of 2 LLMs. Results: LLM 2 significantly outperformed LLM 1 by correctly answering 1662 of 1956 questions (85.0%) vs 1306 questions (66.8%) for LLM 1. Notably, LLM 2's performance was greater than the mean human score of 73.8%, effectively achieving near-passing and passing grades in the neurology board examination. LLM 2 outperformed human users in behavioral, cognitive, and psychological-related questions and demonstrated superior performance to LLM 1 in 6 categories. Both LLMs performed better on lower-order than higher-order questions, with LLM 2 excelling in both lower-order and higher-order questions. Both models consistently used confident language, even when providing incorrect answers. Reproducible answers of both LLMs were associated with a higher percentage of correct answers than inconsistent answers. Conclusions and Relevance: Despite the absence of neurology-specific training, LLM 2 demonstrated commendable performance, whereas LLM 1 performed slightly below the human average. While higher-order cognitive tasks were more challenging for both models, LLM 2's results were equivalent to passing grades in specialized neurology examinations. These findings suggest that LLMs could have significant applications in clinical neurology and health care with further refinements.


Asunto(s)
Lenguaje , Neurología , Humanos , Estudios Transversales , Reproducibilidad de los Resultados , Examen Neurológico
11.
J Neurosci ; 43(30): 5574-5587, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37429718

RESUMEN

Glioblastoma is the most common malignant primary brain tumor with poor overall survival. Magnetic resonance imaging (MRI) is the main imaging modality for glioblastoma but has inherent shortcomings. The molecular and cellular basis of MR signals is incompletely understood. We established a ground truth-based image analysis platform to coregister MRI and light sheet microscopy (LSM) data to each other and to an anatomic reference atlas for quantification of 20 predefined anatomic subregions. Our pipeline also includes a segmentation and quantification approach for single myeloid cells in entire LSM datasets. This method was applied to three preclinical glioma models in male and female mice (GL261, U87MG, and S24), which exhibit different key features of the human glioma. Multiparametric MR data including T2-weighted sequences, diffusion tensor imaging, T2 and T2* relaxometry were acquired. Following tissue clearing, LSM focused on the analysis of tumor cell density, microvasculature, and innate immune cell infiltration. Correlated analysis revealed differences in quantitative MRI metrics between the tumor-bearing and the contralateral hemisphere. LSM identified tumor subregions that differed in their MRI characteristics, indicating tumor heterogeneity. Interestingly, MRI signatures, defined as unique combinations of different MRI parameters, differed greatly between the models. The direct correlation of MRI and LSM allows an in-depth characterization of preclinical glioma and can be used to decipher the structural, cellular, and, likely, molecular basis of tumoral MRI biomarkers. Our approach may be applied in other preclinical brain tumor or neurologic disease models, and the derived MRI signatures could ultimately inform image interpretation in a clinical setting.SIGNIFICANCE STATEMENT We established a histologic ground truth-based approach for MR image analyses and tested this method in three preclinical glioma models exhibiting different features of glioblastoma. Coregistration of light sheet microscopy to MRI allowed for an evaluation of quantitative MRI data in histologically distinct tumor subregions. Coregistration to a mouse brain atlas enabled a regional comparison of MRI parameters with a histologically informed interpretation of the results. Our approach is transferable to other preclinical models of brain tumors and further neurologic disorders. The method can be used to decipher the structural, cellular, and molecular basis of MRI signal characteristics. Ultimately, information derived from such analyses could strengthen the neuroradiological evaluation of glioblastoma as they enhance the interpretation of MRI data.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Masculino , Femenino , Humanos , Animales , Ratones , Glioblastoma/diagnóstico por imagen , Imagen de Difusión Tensora , Microscopía , Glioma/diagnóstico por imagen , Glioma/patología , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología
12.
Neuro Oncol ; 25(12): 2150-2162, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37335907

RESUMEN

BACKGROUND: Glioblastomas are characterized by aggressive and infiltrative growth, and by striking heterogeneity. The aim of this study was to investigate whether tumor cell proliferation and invasion are interrelated, or rather distinct features of different cell populations. METHODS: Tumor cell invasion and proliferation were longitudinally determined in real-time using 3D in vivo 2-photon laser scanning microscopy over weeks. Glioblastoma cells expressed fluorescent markers that permitted the identification of their mitotic history or their cycling versus non-cycling cell state. RESULTS: Live reporter systems were established that allowed us to dynamically determine the invasive behavior, and previous or actual proliferation of distinct glioblastoma cells, in different tumor regions and disease stages over time. Particularly invasive tumor cells that migrated far away from the main tumor mass, when followed over weeks, had a history of marked proliferation and maintained their proliferative capacity during brain colonization. Infiltrating cells showed fewer connections to the multicellular tumor cell network, a typical feature of gliomas. Once tumor cells colonized a new brain region, their phenotype progressively transitioned into tumor microtube-rich, interconnected, slower-cycling glioblastoma cells. Analysis of resected human glioblastomas confirmed a higher proliferative potential of tumor cells from the invasion zone. CONCLUSIONS: The detection of glioblastoma cells that harbor both particularly high proliferative and invasive capabilities during brain tumor progression provides valuable insights into the interrelatedness of proliferation and migration-2 central traits of malignancy in glioma. This contributes to our understanding of how the brain is efficiently colonized in this disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Invasividad Neoplásica/genética , Neoplasias Encefálicas/patología , Proliferación Celular , Movimiento Celular , Línea Celular Tumoral
13.
Trends Cancer ; 9(6): 457-458, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100731

RESUMEN

Glioblastomas are incurable tumors often associated with epileptic seizures. In a recent study published in Neuron,Curry et al. demonstrated a novel function of the membrane protein IGSF3 that induces potassium dysregulation, neuronal hyperexcitability, and tumor progression. This work uncovers a novel layer of bidirectional neuron-tumor communication, further underlining the importance of comprehensively investigating neuron-tumor networks in glioblastoma.


Asunto(s)
Glioblastoma , Glioma , Humanos , Potasio , Glioma/genética , Neuronas , Proteínas de la Membrana/genética , Inmunoglobulinas/genética
14.
Cell ; 186(8): 1689-1707, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37059069

RESUMEN

The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.


Asunto(s)
Neoplasias , Neurociencias , Humanos , Sistema Inmunológico , Neoplasias/patología , Neuronas/patología , Microambiente Tumoral
16.
Cancer Res ; 83(8): 1299-1314, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36652557

RESUMEN

Crossing the blood-brain barrier is a crucial, rate-limiting step of brain metastasis. Understanding of the mechanisms of cancer cell extravasation from brain microcapillaries is limited as the underlying cellular and molecular processes cannot be adequately investigated using in vitro models and endpoint in vivo experiments. Using ultrastructural and functional imaging, we demonstrate that dynamic changes of activated brain microcapillaries promote the mandatory first steps of brain colonization. Successful extravasation of arrested cancer cells occurred when adjacent capillary endothelial cells (EC) entered into a distinct remodeling process. After extravasation, capillary loops were formed, which was characteristic of aggressive metastatic growth. Upon cancer cell arrest in brain microcapillaries, matrix-metalloprotease 9 (MMP9) was expressed. Inhibition of MMP2/9 and genetic perturbation of MMP9 in cancer cells, but not the host, reduced EC projections, extravasation, and brain metastasis outgrowth. These findings establish an active role of ECs in the process of cancer cell extravasation, facilitated by cross-talk between the two cell types. This extends our understanding of how host cells can contribute to brain metastasis formation and how to prevent it. SIGNIFICANCE: Tracking single extravasating cancer cells using multimodal correlative microscopy uncovers a brain seeding mechanism involving endothelial remodeling driven by cancer cell-derived MMP9, which might enable the development of approaches to prevent brain metastasis. See related commentary by McCarty, p. 1167.


Asunto(s)
Neoplasias Encefálicas , Endotelio Vascular , Humanos , Endotelio Vascular/patología , Células Endoteliales/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral
17.
Nature ; 613(7942): 179-186, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517594

RESUMEN

Diffuse gliomas, particularly glioblastomas, are incurable brain tumours1. They are characterized by networks of interconnected brain tumour cells that communicate via Ca2+ transients2-6. However, the networks' architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and are particularly connected to others. Their autonomous periodic Ca2+ transients preceded Ca2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca2+ activity generates a vulnerability7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , FN-kappa B/metabolismo , Sistema de Señalización de MAP Quinasas , Señalización del Calcio , Muerte Celular , Análisis de Supervivencia , Calcio/metabolismo
18.
Neurotherapeutics ; 19(6): 1832-1843, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357661

RESUMEN

Diffuse gliomas are primary brain tumors associated with a poor prognosis. Cellular and molecular mechanisms driving the invasive growth patterns and therapeutic resistance are incompletely understood. The emerging field of cancer neuroscience offers a novel approach to study these brain tumors in the context of their intricate interactions with the nervous system employing and combining methodological toolsets from neuroscience and oncology. Increasing evidence has shown how neurodevelopmental and neuronal-like mechanisms are hijacked leading to the discovery of multicellular brain tumor networks. Here, we review how gap junction-coupled tumor-tumor-astrocyte networks, as well as synaptic and paracrine neuron-tumor networks drive glioma progression. Molecular mechanisms of these malignant, homo- and heterotypic networks, and their complex interplay are reviewed. Lastly, potential clinical-translational implications and resulting therapeutic strategies are discussed.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/patología , Neoplasias Encefálicas/tratamiento farmacológico , Astrocitos/patología , Neuronas/patología
20.
Nat Rev Cancer ; 22(12): 662, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36216887
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA