Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38818709

RESUMEN

OBJECTIVE: To report our experience with 18F-fluoro-ethyl-tyrosine (FET) positron emission tomography-computed tomography (PET-CT) co-registered with magnetic resonance imaging (MRI) (FET-PET/MRICR) in the care trajectory for persistent acromegaly. DESIGN: Prospective case series. PATIENTS: Ten patients with insufficiently controlled acromegaly referred to our team to evaluate surgical options. MEASUREMENTS: FET-PET/MRICR was used to support decision-making if MRI alone and multidisciplinary team evaluation did not provide sufficient clarity to proceed to surgery. RESULTS: FET-PET/MRICR showed suspicious (para)sellar tracer uptake in all patients. In five patients FET-PET/MRICR was fully concordant with conventional MRI, and in one patient partially concordant. FET-PET/MRICR identified suggestive new foci in four other patients. Surgical re-exploration was performed in nine patients (aimed at total resection (6), debulking (2), diagnosis (1)), and one patient underwent radiation therapy. In 7 of 9 (78%) operated patients FET-PET/MRICR findings were confirmed intraoperatively, and in six (67%) also histologically. IGF-1 decreased significantly in eight patients (89%). All patients showed clinical improvement. Complete biochemical remission was achieved in three patients (50% of procedures in which total resection was anticipated feasible). Biochemistry improved in five and was unchanged in one patient. No permanent complications occurred. At six months, optimal outcome (preoperative intended goal achieved without permanent complications) was achieved in six (67%) patients and an intermediate outcome (goal not achieved, but no complications) in the other three patients. CONCLUSIONS: In patients with persisting acromegaly without a clear surgical target on MRI, FET-PET/MRICR is a new tracer to provide additional information to aid decision-making by the multidisciplinary pituitary team.

2.
Front Neurol ; 14: 1239422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719762

RESUMEN

Background: Ménière's disease (MD) is a chronic inner ear disorder with a multifactorial etiology. Decreased visualization of the endolymphatic duct (ED) and sac (ES) is thought to be associated with MD, although controversy exists about whether this finding is specific to MD. Recent literature has revealed that two distinct ES pathologies, developmental hypoplasia and epithelial degeneration, can be distinguished in MD using the angular trajectory of the vestibular aqueduct (ATVA) or ED-ES system as a radiographic surrogate marker. It has been suggested that these two subtypes are associated with distinct phenotypical features. However, the clinical differences between the ATVA subtypes require further validation. Research objective: The objective of this study is to investigate whether (1) non-visualization of the ED-ES system is a discriminative radiological feature for MD in a cohort of vertigo-associated pathologies (VAPs) and whether (2) different angular trajectories of the ED-ES system in MD are associated with distinguishable clinical features. Setting: The study was conducted in the Vertigo Referral Center (Haga Teaching Hospital, The Hague, the Netherlands). Methods: We retrospectively assessed 301 patients (187 definite MD and 114 other VAPs) that underwent 4h-delayed 3D FLAIR MRI. We evaluated (1) the visibility of the ED-ES system between MD and other VAP patients and (2) measured the angular trajectory of the ED-ES system. MD patients were stratified based on the angular measurements into αexit ≤ 120° (MD-120), αexit 120°-140° (MD-intermediate), or αexit ≥ 140° (MD-140). Correlations between ATVA subgroups and clinical parameters were evaluated. Results: Non-visualization of the ED-ES system was more common in definite MD patients compared with other VAPs (P < 0.001). Among definite MD patients, the MD-140 subtype demonstrated a longer history of vertigo (P = 0.006), a higher prevalence of bilateral clinical disease (P = 0.005), and a trend toward a male preponderance (p = 0.053). No significant differences were found between ATVA subgroups regarding the presence or severity of auditory symptoms, or the frequency of vertigo attacks. Conclusion: Non-visualization of the ED-ES system is significantly associated with MD. Among MD patients with a visible ED-ES system, we demonstrated that the MD-140 subtype is associated with a longer disease duration, a higher prevalence of bilateral MD, and a trend toward a male preponderance.

3.
Otolaryngol Head Neck Surg ; 169(6): 1582-1589, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37555251

RESUMEN

OBJECTIVE: Validation of automated 2-dimensional (2D) diameter measurements of vestibular schwannomas on magnetic resonance imaging (MRI). STUDY DESIGN: Retrospective validation study using 2 data sets containing MRIs of vestibular schwannoma patients. SETTING: University Hospital in The Netherlands. METHODS: Two data sets were used, 1 containing 1 scan per patient (n = 134) and the other containing at least 3 consecutive MRIs of 51 patients, all with contrast-enhanced T1 or high-resolution T2 sequences. 2D measurements of the maximal extrameatal diameters in the axial plane were automatically derived from a 3D-convolutional neural network compared to manual measurements by 2 human observers. Intra- and interobserver variabilities were calculated using the intraclass correlation coefficient (ICC), agreement on tumor progression using Cohen's kappa. RESULTS: The human intra- and interobserver variability showed a high correlation (ICC: 0.98-0.99) and limits of agreement of 1.7 to 2.1 mm. Comparing the automated to human measurements resulted in ICC of 0.98 (95% confidence interval [CI]: 0.974; 0.987) and 0.97 (95% CI: 0.968; 0.984), with limits of agreement of 2.2 and 2.1 mm for diameters parallel and perpendicular to the posterior side of the temporal bone, respectively. There was satisfactory agreement on tumor progression between automated measurements and human observers (Cohen's κ = 0.77), better than the agreement between the human observers (Cohen's κ = 0.74). CONCLUSION: Automated 2D diameter measurements and growth detection of vestibular schwannomas are at least as accurate as human 2D measurements. In clinical practice, measurements of the maximal extrameatal tumor (2D) diameters of vestibular schwannomas provide important complementary information to total tumor volume (3D) measurements. Combining both in an automated measurement algorithm facilitates clinical adoption.


Asunto(s)
Neuroma Acústico , Humanos , Neuroma Acústico/diagnóstico por imagen , Neuroma Acústico/patología , Inteligencia Artificial , Estudios Retrospectivos , Algoritmos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
4.
Adv Radiat Oncol ; 8(3): 101149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36691449

RESUMEN

Purpose: Several efforts are being undertaken toward MRI-based treatment planning for ocular proton therapy for uveal melanoma (UM). The interobserver variability of the gross target volume (GTV) on magnetic resonance imaging (MRI) is one of the important parameters to design safety margins for a reliable treatment. Therefore, this study assessed the interobserver variation in GTV delineation of UM on MRI. Methods and Materials: Six observers delineated the GTV in 10 different patients using the Big Brother contouring software. Patients were scanned at 3T MRI with a surface coil, and tumors were delineated separately on contrast enhanced 3DT1 (T1gd) and 3DT2-weighted scans with an isotropic acquisition resolution of 0.8 mm. Volume difference and overall local variation (median standard deviation of the distance between the delineated contours and the median contour) were analyzed for each GTV. Additionally, the local variation was analyzed for 4 interfaces: sclera, vitreous, retinal detachment, and tumor-choroid interface. Results: The average GTV was significantly larger on T1gd (0.57cm3) compared with T2 (0.51cm3, P = .01). A not significant higher interobserver variation was found on T1gd (0.41 mm) compared with T2 (0.35 mm). The largest variations were found at the tumor-choroid interface due to peritumoral enhancement (T1gd, 0.62 mm; T2, 0.52 mm). As a result, a larger part of this tumor-choroid interface appeared to be included on T1gd-based GTVs compared with T2, explaining the smaller volumes on T2. Conclusions: The interobserver variation of 0.4 mm on MRI are low with respect to the voxel size of 0.8 mm, enabling small treatment margins. We recommend delineation based on the T1gd-weighted scans, as choroidal tumor extensions might be missed.

5.
Ophthalmol Retina ; 7(2): 178-188, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35840053

RESUMEN

OBJECTIVE: Conventionally, ocular proton therapy (PT) is planned using measurements obtained by an ophthalmologist using ultrasound, fundoscopy, biometry, and intraoperative assessments. Owing to the recent advances in magnetic resonance imaging (MRI) of uveal melanoma (UM), it is possible to acquire high-resolution 3-dimensional images of the eye, providing the opportunity to incorporate MRI in ocular PT planning. In this study, we described how these measurements can be obtained using MRI, compared the MRI-based measurements with conventional ophthalmic measurements, and identified potential pitfalls for both modalities. DESIGN: Cross-sectional study. SUBJECTS: Data from 23 consecutive patients with UM treated with PT were retrospectively evaluated. METHODS: Magnetic resonance imaging-based measurements of axial length, tumor height and basal diameter, and marker-tumor distances were compared with the conventional ophthalmic measurements, and discrepancies were evaluated in a multidisciplinary setting. MAIN OUTCOME MEASURES: Tumor prominence and basal diameters on MRI and ultrasound, axial length on MRI and biometry, tumor-marker distances on MRI and measured intraoperatively. RESULTS: The mean absolute differences of the tumor height and basal diameter measurements between ultrasound and MRI were 0.57 mm and 1.44 mm, respectively. Larger absolute differences in height and basal diameter were observed when the full tumor extent was not visible on ultrasound (0.92 mm and 1.67 mm, respectively) compared with when the full tumor extent was visible (0.44 mm and 1.15 mm, respectively). When the full tumor was not visible on ultrasound, MRI was considered more reliable. Tumor-marker distances measured using MRI and intraoperative techniques differed < 1 mm in 55% of the markers. For anteriorly located and mushroom-shaped tumors (25% of the markers), MRI provided more accurate measurements. In flat UM (15% of the markers), however, it was difficult to delineate the tumor on MRI. The mean absolute difference in axial length between optical biometry and MRI was 0.50 mm. The presence of the tumor was found to influence optical biometry in 15 of 22 patients; the remaining patients showed a better agreement (0.30 mm). Magnetic resonance imaging-based biometry was considered more reliable in patients with UM. CONCLUSIONS: Magnetic resonance imaging allowed for the 3-dimensional assessment of the tumor and surrounding tissue. In specific patients, it provided a more reliable measurement of axial length, tumor dimensions, and marker-tumor distances and could contribute to a more accurate treatment planning. Nevertheless, a combined evaluation remains advised, especially for flat UM.


Asunto(s)
Terapia de Protones , Humanos , Estudios Transversales , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos
6.
Phys Imaging Radiat Oncol ; 24: 102-110, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36386446

RESUMEN

Background and Purpose: Three-dimensional (3D) Magnetic Resonance Imaging (MRI) is increasingly used to complement conventional two-dimensional ultrasound in the assessment of tumour dimension measurement of uveal melanoma. However, the lack of definitions of the 3D measurements of these tumour dimensions hinders further adaptation of MRI in ocular radiotherapy planning. In this study, we composed 3D MR-based definitions of tumour prominence and basal diameter and compared them to conventional ultrasound. Materials and methods: Tumours were delineated on 3DT2 and contrast-enhanced 3DT1 (T1gd) MRI for 25 patients. 3D definitions of tumour prominence and diameter were composed and evaluated automatically on the T1gd and T2 contours. Automatic T1gd measurements were compared to manual MRI measurements, to automatic T2 measurements and to manual ultrasound measurements. Results: Prominence measurements were similar for all modalities (median absolute difference 0.3 mm). Automatic T1gd diameter measurements were generally larger than manual MRI, automatic T2 and manual ultrasound measurements (median absolute differences of 0.5, 1.6 and 1.1 mm respectively), mainly due to difficulty defining the axis of the largest diameter. Largest differences between ultrasound and MRI for both prominence and diameter were found in anteriorly located tumours (up to 1.6 and 4.5 mm respectively), for which the tumour extent could not entirely be visualized with ultrasound. Conclusions: The proposed 3D definitions for tumour prominence and diameter agreed well with ultrasound measurements for tumours for which the extent was visible on ultrasound. 3D MRI measurements generally provided larger diameter measurements than ultrasound. In anteriorly located tumours, the MRI measurements were considered more accurate than conventional ultrasound.

7.
J Cachexia Sarcopenia Muscle ; 13(6): 2820-2834, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36172973

RESUMEN

Ophthalmoparesis and ptosis can be caused by a wide range of rare or more prevalent diseases, several of which can be successfully treated. In this review, we provide clues to aid in the diagnosis of these diseases, based on the clinical symptoms, the involvement pattern and imaging features of extra-ocular muscles (EOM). Dysfunction of EOM including the levator palpebrae can be due to muscle weakness, anatomical restrictions or pathology affecting the innervation. A comprehensive literature review was performed to find clinical and imaging clues for the diagnosis and follow-up of ptosis and ophthalmoparesis. We used five patterns as a framework for differential diagnostic reasoning and for pattern recognition in symptomatology, EOM involvement and imaging results of individual patients. The five patterns were characterized by the presence of combination of ptosis, ophthalmoparesis, diplopia, pain, proptosis, nystagmus, extra-orbital symptoms, symmetry or fluctuations in symptoms. Each pattern was linked to anatomical locations and either hereditary or acquired diseases. Hereditary muscle diseases often lead to ophthalmoparesis without diplopia as a predominant feature, while in acquired eye muscle diseases ophthalmoparesis is often asymmetrical and can be accompanied by proptosis and pain. Fluctuation is a hallmark of an acquired synaptic disease like myasthenia gravis. Nystagmus is indicative of a central nervous system lesion. Second, specific EOM involvement patterns can also provide valuable diagnostic clues. In hereditary muscle diseases like chronic progressive external ophthalmoplegia (CPEO) and oculo-pharyngeal muscular dystrophy (OPMD) the superior rectus is often involved. In neuropathic disease, the pattern of involvement of the EOM can be linked to specific cranial nerves. In myasthenia gravis this pattern is variable within patients over time. Lastly, orbital imaging can aid in the diagnosis. Fat replacement of the EOM is commonly observed in hereditary myopathic diseases, such as CPEO. In contrast, inflammation and volume increases are often observed in acquired muscle diseases such as Graves' orbitopathy. In diseases with ophthalmoparesis and ptosis specific patterns of clinical symptoms, the EOM involvement pattern and orbital imaging provide valuable information for diagnosis and could prove valuable in the follow-up of disease progression and the understanding of disease pathophysiology.


Asunto(s)
Blefaroptosis , Oftalmopatía de Graves , Miastenia Gravis , Oftalmoplejía , Humanos , Oftalmopatía de Graves/complicaciones , Blefaroptosis/etiología , Blefaroptosis/complicaciones , Oftalmoplejía/diagnóstico , Oftalmoplejía/complicaciones , Diplopía/diagnóstico , Diplopía/etiología , Miastenia Gravis/complicaciones , Miastenia Gravis/diagnóstico , Dolor/complicaciones
8.
Radiol Artif Intell ; 4(4): e210300, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35923375

RESUMEN

Purpose: To develop automated vestibular schwannoma measurements on contrast-enhanced T1- and T2-weighted MRI scans. Materials and Methods: MRI data from 214 patients in 37 different centers were retrospectively analyzed between 2020 and 2021. Patients with hearing loss (134 positive for vestibular schwannoma [mean age ± SD, 54 years ± 12;64 men] and 80 negative for vestibular schwannoma) were randomly assigned to a training and validation set and to an independent test set. A convolutional neural network (CNN) was trained using fivefold cross-validation for two models (T1 and T2). Quantitative analysis, including Dice index, Hausdorff distance, surface-to-surface distance (S2S), and relative volume error, was used to compare the computer and the human delineations. An observer study was performed in which two experienced physicians evaluated both delineations. Results: The T1-weighted model showed state-of-the-art performance, with a mean S2S distance of less than 0.6 mm for the whole tumor and the intrameatal and extrameatal tumor parts. The whole tumor Dice index and Hausdorff distance were 0.92 and 2.1 mm in the independent test set, respectively. T2-weighted images had a mean S2S distance less than 0.6 mm for the whole tumor and the intrameatal and extrameatal tumor parts. The whole tumor Dice index and Hausdorff distance were 0.87 and 1.5 mm in the independent test set. The observer study indicated that the tool was similar to human delineations in 85%-92% of cases. Conclusion: The CNN model detected and delineated vestibular schwannomas accurately on contrast-enhanced T1- and T2-weighted MRI scans and distinguished the clinically relevant difference between intrameatal and extrameatal tumor parts.Keywords: MRI, Ear, Nose, and Throat, Skull Base, Segmentation, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms Supplemental material is available for this article. © RSNA, 2022.

9.
Pituitary ; 25(4): 587-601, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35616762

RESUMEN

PURPOSE: To report the first experience of our multidisciplinary team with functional imaging using 11C-methionine positron emission tomography-computed tomography (11C-methionine PET-CT) co-registered with MRI (Met-PET/MRICR) in clinical decision making and surgical planning of patients with difficult to treat prolactinoma. METHODS: In eighteen patients with prolactinoma, referred to our tertiary referral centre because of intolerance or resistance for dopamine agonists (DA), Met-PET/MRICR was used to aid decision-making regarding therapy. RESULTS: Met-PET/MRICR was positive in 94% of the patients. MRI and Met-PET/MRICR findings were completely concordant in five patients, partially concordant in nine patients, and non-concordant in four patients. In five patients Met-PET/MRICR identified lesion(s) that were retrospectively also visible on MRI. Met-PET/MRICR was false negative in one patient, with a cystic adenoma on conventional MRI. Thirteen patients underwent transsphenoidal surgery, with nine achieving full biochemical remission, two clinical improvement and near normalized prolactin levels, and one patient clinical improvement with significant tumour reduction. Hence, nearly all patients (94%) were considered to have a positive outcome. Permanent complication rate was low. Three patients continued DA, two patients have a wait and scan policy. CONCLUSION: Met-PET/MRICR can provide additional information to guide multidisciplinary preoperative and intraoperative decision making in selected cases of prolactinoma. This approach resulted in a high remission rate with a low rate of complications in our expert centre.


Asunto(s)
Neoplasias Hipofisarias , Prolactinoma , Toma de Decisiones , Humanos , Imagen por Resonancia Magnética/métodos , Metionina , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/cirugía , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Prolactinoma/diagnóstico por imagen , Prolactinoma/cirugía , Estudios Retrospectivos
10.
Otol Neurotol ; 43(4): e427-e434, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35213473

RESUMEN

HYPOTHESIS: Insertion speed during cochlear implantation determines the risk of cochlear trauma. By slowing down insertion speed tactile feedback is improved. This is highly conducive to control the course of the electrode array along the cochlear contour and prevent translocation from the scala tympani to the scala vestibuli. BACKGROUND: Limiting insertion trauma is a dedicated goal in cochlear implantation to maintain the most favorable situation for electrical stimulation of the remaining stimulable neural components of the cochlea. Surgical technique is one of the potential influencers on translocation behavior of the electrode array. METHODS: The intrascalar position of 226 patients, all implanted with a precurved electrode array, aiming a mid-scalar position, was evaluated. One group (n = 113) represented implantation with an insertion time less than 25 seconds (fast insertion) and the other group (n = 113) was implanted in 25 or more seconds (slow insertion). A logistic regression analysis studied the effect of insertion speed on insertion trauma, controlled for surgical approach, cochlear size, and angular insertion depth. Furthermore, the effect of translocation on speech performance was evaluated using a linear mixed model. RESULTS: The translocation rate within the fast and slow insertion groups were respectively 27 and 10%. A logistic regression analysis showed that the odds of dislocation increases by 2.527 times with a fast insertion, controlled for surgical approach, cochlear size, and angular insertion depth (95% CI = 1.135, 5.625). We failed to find a difference in speech recognition between patients with and without translocated electrode arrays. CONCLUSION: Slowing down insertion speed till 25 seconds or longer reduces the incidence of translocation.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Cóclea/cirugía , Implantación Coclear/métodos , Electrodos Implantados , Humanos , Rampa Timpánica/cirugía , Escala Vestibular/cirugía
13.
Eur Arch Otorhinolaryngol ; 279(10): 4735-4743, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35041067

RESUMEN

PURPOSE: The aim of this study was to evaluate the intracochlear position of the Slim Modiolar Electrode (SME) after insertion via the extended Round Window (eRW) approach, and to correlate this with residual hearing preservation and speech perception outcomes. METHODS: Twenty-three adult participants, consecutively implanted with the SME via the eRW approach, were included in this prospective, single-center, observational study. Electrode position was evaluated intra-operatively using X-ray fluoroscopy and TIM measurement, and post-operatively using ultra-high resolution CT. Residual hearing [threshold shift in PTA between pre- and post-operative measurement, relative hearing preservation (RHP%)] and speech perception were evaluated at 2 and 12 months after surgery. RESULTS: In each of the 23 participants, complete scala tympani positioning of the electrode array could be achieved. In one participant, an initial tip fold-over was corrected during surgery. Average age at implantation was 63.3 years (SD 13.3, range 28-76) and mean preoperative residual hearing was 81.5 dB. The average post-operative PTA threshold shift was 16.2 dB (SD 10.8) at 2 months post-operatively, corresponding with a RHP% score of 44% (SD 34.9). At 12 months, the average RHP% score decreased to 37%. Postoperative phoneme scores improved from 27.1% preoperatively, to 72.1% and 82.1% at 2 and 12 months after surgery, respectively. CONCLUSION: Use of the eRW approach results in an increased likelihood of complete scala tympani insertion when inserting the SME, with subsequent excellent levels of speech perception. However, residual hearing preservation was found to be moderate, possibly as a result of the extended round window approach, emphasizing that it is not an all-purpose approach for inserting this particular electrode array.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Adulto , Cóclea/cirugía , Implantación Coclear/métodos , Electrodos Implantados , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Estudios Prospectivos
14.
Radiology ; 302(3): 605-612, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34874202

RESUMEN

Background Histopathologic studies reported that cochlear implantation, a well-established means to treat severe-to-profound sensorineural hearing loss, may induce inflammation, fibrosis, and new bone formation (NBF) with possible impact on loss of residual hearing and hearing outcome. Purpose To assess NBF in vivo after cochlear implantation with ultra-high-spatial-resolution (UHSR) CT and its implication on long-term residual hearing outcome. Materials and Methods In a secondary analysis of a prospective single-center cross-sectional study, conducted between December 2016 and January 2018, patients with at least 1 year of cochlear implantation experience underwent temporal bone UHSR CT and residual hearing assessment. Two observers evaluated the presence and location of NBF independently, and tetrachoric correlations were used to assess interobserver reliability. In addition, the scalar location of each electrode was assessed. After consensus agreement, participants were classified into two groups: those with NBF (n = 83) and those without NBF (n = 40). The association between NBF and clinical parameters, including electrode design, surgical approach, and long-term residual hearing loss, was tested using the χ2 and Student t tests. Results A total of 123 participants (mean age ± standard deviation, 63 years ± 13; 63 women) were enrolled. NBF was found in 83 of the 123 participants (68%) at 466 of 2706 electrode contacts (17%). Most NBFs (428 of 466, 92%) were found around the 10 most basal contacts, with an interobserver agreement of 86% (2297 of 2683 contacts). Associations between electrode types and surgical approaches were significant (58 of 79 participants with NBF and a precurved electrode vs 24 of 43 with NBF and a straight electrode, P = .04; 64 of 88 participants with NBF and a cochleostomy approach vs 18 of 34 with NBF and a round window approach, P = .03). NBF was least often seen in full scala tympani insertions, but there was no significant association between scalar position and NBF (P = .15). Long-term residual hearing loss was significantly larger in the group with NBF compared with the group without NBF (mean, 22.9 dB ± 14 vs 8.6 dB ± 18, respectively; P = .04). Conclusion In vivo detection of new bone formation (NBF) after cochlear implantation is possible by using ultra-high-spatial-resolution CT. Most cochlear implant recipients develop NBF, predominately located at the base of the cochlea. NBF adversely affects long-term residual hearing preservation. © RSNA, 2021 An earlier incorrect version appeared online. This article was corrected on December 8, 2021.


Asunto(s)
Implantación Coclear , Osteogénesis , Hueso Temporal/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Estudios Transversales , Femenino , Pruebas Auditivas , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
15.
Radiother Oncol ; 167: 42-48, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34915063

RESUMEN

BACKGROUND: Inevitably, the emergence of COVID-19 has impacted non-COVID care. Because timely diagnosis and treatment are essential, especially for patients with head and neck cancer (HNC) with fast-growing tumours in a functionally and aesthetically important area, we wished to quantify the impact of the COVID-19 pandemic on HNC care in the Netherlands. MATERIAL AND METHODS: This population-based study covered all, in total 8468, newly diagnosed primary HNC cases in the Netherlands in 2018, 2019 and 2020. We compared incidence, patient and tumour characteristics, primary treatment characteristics, and time-to-treatment in the first COVID-19 year 2020 with corresponding periods in 2018 and 2019 (i.e. pre-COVID). RESULTS: The incidence of HNC was nearly 25% less during the first wave (n = 433) than in 2019 (n = 595) and 2018 (n = 598). In April and May 2020, the incidence of oral cavity and laryngeal carcinomas was significantly lower than in pre-COVID years. There were no shifts in tumour stage or alterations in initial treatment modalities. Regardless of the first treatment modality and specific period, the median number of days between first visit to a HNC centre and start of treatment was significantly shorter during the COVID-19 year (26-28 days) than pre-COVID (31-32 days, p < 0.001). CONCLUSION: The incidence of HNC during the Netherlands' first COVID-19 wave was significantly lower than expected. The expected increase in incidence during the remainder of 2020 was not observed. Despite the overloaded healthcare system, the standard treatment for HNC patients could be delivered within a shorter time interval.


Asunto(s)
COVID-19 , Neoplasias de Cabeza y Cuello , Neoplasias Laríngeas , COVID-19/epidemiología , Neoplasias de Cabeza y Cuello/epidemiología , Neoplasias de Cabeza y Cuello/terapia , Humanos , Incidencia , Pandemias
16.
Neuroradiology ; 64(1): 171-184, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34718831

RESUMEN

PURPOSE: To evaluate the magnetic resonance imaging (MRI) characteristics of uveal melanoma (UM), to compare them with fundoscopy and ultrasound (US), and to validate them with histopathology. METHODS: MR images from 42 UM were compared with US and fundoscopy, and on 14 enucleated cases with histopathology. RESULTS: A significant relationship between the signal intensity on T1 and pigmentation on histopathology was found (p=0.024). T1 hyperintense UM were always moderately or strongly pigmented on histopathology, while T1-hypointense UM were either pigmented or non-pigmented. Mean apparent diffusion coefficient (ADC) of the UM was 1.16 ± 0.26 × 10-3 mm2/s. Two-thirds of the UM had a wash-out and the remaining a plateau perfusion time-intensity curve (TIC). MRI was limited in evaluating the basal diameter of flat tumors. US tends to show larger tumor prominence (0.5mm larger, p=0.008) and largest basal diameter (1.4mm larger, p<0.001). MRI was good in diagnosing ciliary body involvement, extrascleral extension, and optic nerve invasion, but limited on identifying scleral invasion. An increase of tumor prominence was associated with lower ADC values (p=0.030) and favored a wash-out TIC (p=0.028). An increase of tumor ADC correlated with a plateau TIC (p=0.011). CONCLUSIONS: The anatomical and functional MRI characteristics of UM were comprehensively assessed. Knowing the MRI characteristics of UM is important in order to confirm the diagnosis and to differentiate UM from other intra-ocular lesions and because it has implications for treatment planning. MRI is a good technique to evaluate UM, being only limited in case of flat tumors or on identifying scleral invasion.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Humanos , Imagen por Resonancia Magnética , Melanoma/diagnóstico por imagen , Ultrasonografía , Neoplasias de la Úvea/diagnóstico por imagen
17.
Front Surg ; 8: 758947, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805261

RESUMEN

Research Objective: To investigate the correlation between clinical features and MRI-confirmed endolymphatic hydrops (EH) and blood-labyrinth barrier (BLB) impairment. Study Design: Retrospective cross-sectional study. Setting: Vertigo referral center (Haga Teaching Hospital, The Hague, the Netherlands). Methods: We retrospectively analyzed all patients that underwent 4 h-delayed Gd-enhanced 3D FLAIR MRI at our institution from February 2017 to March 2019. Perilymphatic enhancement and the degree of cochlear and vestibular hydrops were assessed. The signal intensity ratio (SIR) was calculated by region of interest analysis. Correlations between MRI findings and clinical features were evaluated. Results: Two hundred and fifteen patients with MRI-proven endolymphatic hydrops (EH) were included (179 unilateral, 36 bilateral) with a mean age of 55.9 yrs and median disease duration of 4.3 yrs. Hydrops grade is significantly correlated with disease duration (P < 0.001), the severity of low- and high-frequency hearing loss (both P < 0.001), and the incidence of drop attacks (P = 0.001). Visually increased perilymphatic enhancement was present in 157 (87.7%) subjects with unilateral EH. SIR increases in correlation with hydrops grade (P < 0.001), but is not significantly correlated with the low or high Fletcher index (P = 0.344 and P = 0.178 respectively). No significant differences were found between the degree of EH or BLB impairment and vertigo, tinnitus or aural fullness. Conclusion: The degree of EH positively correlates with disease duration, hearing loss and the incidence of drop attacks. The BLB is impaired in association with EH grade, but without clear contribution to the severity of audiovestibular symptoms.

18.
Ear Hear ; 42(4): 949-960, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33480623

RESUMEN

OBJECTIVES: The primary objective of this study is to identify the biographic, audiologic, and electrode position factors that influence speech perception performance in adult cochlear implant (CI) recipients implanted with a device from a single manufacturer. The secondary objective is to investigate the independent association of the type of electrode (precurved or straight) with speech perception. DESIGN: In a cross-sectional study design, speech perception measures and ultrahigh-resolution computed tomography scans were performed in 129 experienced CI recipients with a postlingual onset of hearing loss. Data were collected between December 2016 and January 2018 in the Radboud University Medical Center, Nijmegen, the Netherlands. The participants received either a precurved electrode (N = 85) or a straight electrode (N = 44), all from the same manufacturer. The biographic variables evaluated were age at implantation, level of education, and years of hearing loss. The audiometric factors explored were preoperative and postoperative pure-tone average residual hearing and preoperative speech perception score. The electrode position factors analyzed, as measured from images obtained with the ultrahigh-resolution computed tomography scan, were the scalar location, angular insertion depth of the basal and apical electrode contacts, and the wrapping factor (i.e., electrode-to-modiolus distance), as well as the type of electrode used. These 11 variables were tested for their effect on three speech perception outcomes: consonant-vowel-consonant words in quiet tests at 50 dB SPL (CVC50) and 65 dB SPL (CVC65), and the digits-in-noise test. RESULTS: A lower age at implantation was correlated with a higher CVC50 phoneme score in the straight electrode group. Other biographic variables did not correlate with speech perception. Furthermore, participants implanted with a precurved electrode and who had poor preoperative hearing thresholds performed better in all speech perception outcomes than the participants implanted with a straight electrode and relatively better preoperative hearing thresholds. After correcting for biographic factors, audiometric variables, and scalar location, we showed that the precurved electrode led to an 11.8 percentage points (95% confidence interval: 1.4-20.4%; p = 0.03) higher perception score for the CVC50 phonemes compared with the straight electrode. Furthermore, contrary to our initial expectations, the preservation of residual hearing with the straight electrode was poor, as the median preoperative and the postoperative residual hearing thresholds for the straight electrode were 88 and 122 dB, respectively. CONCLUSIONS: Cochlear implantation with a precurved electrode results in a significantly higher speech perception outcome, independent of biographic factors, audiometric factors, and scalar location.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Percepción del Habla , Adulto , Estudios Transversales , Humanos , Resultado del Tratamiento
19.
Otol Neurotol ; 42(2): e124-e129, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32941298

RESUMEN

OBJECTIVES: The aim of this study is to report on our preliminary experience with Transimpedance Matrix (TIM)-measurement for the detection of cochlear implant electrode tip foldovers compared with intraoperative imaging in patients implanted with the slim modiolar electrode (SME). STUDY DESIGN: Proof of concept study. SETTING: Tertiary university referral center. PATIENTS: Twenty five ears (in 22 patients) implanted consecutively with the SME. INTERVENTIONS: Following cochlear implantation, intraoperative TIM-measurement and fluoroscopy were performed. One week postoperatively, the electrode position was evaluated using Computed Tomography (CT)-imaging. MAIN OUTCOME MEASURES: Electrode array tip foldover. RESULTS: Electrode array tip foldover occurred in three of the 25 cochlear implantations performed (12%). In each case, the foldover was detected by both TIM and fluoroscopy, leading to reposition and correct intracochlear placement of the array. CONCLUSIONS: TIM-measurement is a promising method for the intraoperative detection of an electrode array tip foldover. The TIM-tool with intuitive heatmap display is easy to use, fast, and readily available to clinics using TIM-software in the operating theatre.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Cóclea/cirugía , Electrodos Implantados , Humanos , Prueba de Estudio Conceptual
20.
Comput Methods Programs Biomed ; 191: 105387, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32109685

RESUMEN

BACKGROUND AND OBJECTIVE: Performing patient-specific, pre-operative cochlea CT-based measurements could be helpful to positively affect the outcome of cochlear surgery in terms of intracochlear trauma and loss of residual hearing. Therefore, we propose a method to automatically segment and measure the human cochlea in clinical ultra-high-resolution (UHR) CT images, and investigate differences in cochlea size for personalized implant planning. METHODS: 123 temporal bone CT scans were acquired with two UHR-CT scanners, and used to develop and validate a deep learning-based system for automated cochlea segmentation and measurement. The segmentation algorithm is composed of two major steps (detection and pixel-wise classification) in cascade, and aims at combining the results of a multi-scale computer-aided detection scheme with a U-Net-like architecture for pixelwise classification. The segmentation results were used as an input to the measurement algorithm, which provides automatic cochlear measurements (volume, basal diameter, and cochlear duct length (CDL)) through the combined use of convolutional neural networks and thinning algorithms. Automatic segmentation was validated against manual annotation, by the means of Dice similarity, Boundary-F1 (BF) score, and maximum and average Hausdorff distances, while measurement errors were calculated between the automatic results and the corresponding manually obtained ground truth on a per-patient basis. Finally, the developed system was used to investigate the differences in cochlea size within our patient cohort, to relate the measurement errors to the actual variation in cochlear size across different patients. RESULTS: Automatic segmentation resulted in a Dice of 0.90 ± 0.03, BF score of 0.95 ± 0.03, and maximum and average Hausdorff distance of 3.05 ± 0.39 and 0.32 ± 0.07 against manual annotation. Automatic cochlear measurements resulted in errors of 8.4% (volume), 5.5% (CDL), 7.8% (basal diameter). The cochlea size varied broadly, ranging between 0.10 and 0.28 ml (volume), 1.3 and 2.5 mm (basal diameter), and 27.7 and 40.1 mm (CDL). CONCLUSIONS: The proposed algorithm could successfully segment and analyze the cochlea on UHR-CT images, resulting in accurate measurements of cochlear anatomy. Given the wide variation in cochlear size found in our patient cohort, it may find application as a pre-operative tool in cochlear implant surgery, potentially helping elaborate personalized treatment strategies based on patient-specific, image-based anatomical measurements.


Asunto(s)
Cóclea/cirugía , Implantación Coclear , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Humanos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA