Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Nat Commun ; 15(1): 5571, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956041

RESUMEN

Statin drugs lower blood cholesterol levels for cardiovascular disease prevention. Women are more likely than men to experience adverse statin effects, particularly new-onset diabetes (NOD) and muscle weakness. Here we find that impaired glucose homeostasis and muscle weakness in statin-treated female mice are associated with reduced levels of the omega-3 fatty acid, docosahexaenoic acid (DHA), impaired redox tone, and reduced mitochondrial respiration. Statin adverse effects are prevented in females by administering fish oil as a source of DHA, by reducing dosage of the X chromosome or the Kdm5c gene, which escapes X chromosome inactivation and is normally expressed at higher levels in females than males. As seen in female mice, we find that women experience more severe reductions than men in DHA levels after statin administration, and that DHA levels are inversely correlated with glucose levels. Furthermore, induced pluripotent stem cells from women who developed NOD exhibit impaired mitochondrial function when treated with statin, whereas cells from men do not. These studies identify X chromosome dosage as a genetic risk factor for statin adverse effects and suggest DHA supplementation as a preventive co-therapy.


Asunto(s)
Ácidos Docosahexaenoicos , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Mitocondrias , Cromosoma X , Animales , Femenino , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Humanos , Cromosoma X/genética , Ácidos Docosahexaenoicos/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Dosificación de Gen , Ratones Endogámicos C57BL , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Glucosa/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo
2.
J Endocr Soc ; 8(4): bvae029, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38425435

RESUMEN

Body fat accumulation differs between males and females and is influenced by both gonadal sex (ovaries vs testes) and chromosomal sex (XX vs XY). We previously showed that an X chromosome gene, Kdm5c, is expressed at higher levels in females compared to males and correlates with adiposity in mice and humans. Kdm5c encodes a KDM5 histone demethylase that regulates gene expression by modulating histone methylation at gene promoters and enhancers. Here, we use chemical inhibition and genetic knockdown to identify a role for KDM5 activity during early stages of white and brown preadipocyte differentiation, with specific effects on white adipocyte clonal expansion, and white and brown adipocyte gene expression and mitochondrial activity. In white adipogenesis, KDM5 activity modulates H3K4 histone methylation at the Dlk1 gene promoter to repress gene expression and promote progression from preadipocytes to mature adipocytes. In brown adipogenesis, KDM5 activity modulates H3K4 methylation and gene expression of Ucp1, which is required for thermogenesis. Unbiased transcriptome analysis revealed that KDM5 activity regulates genes associated with cell cycle regulation and mitochondrial function, and this was confirmed by functional analyses of cell proliferation and cellular bioenergetics. Using genetic knockdown, we demonstrate that KDM5C is the likely KDM5 family member that is responsible for regulation of white and brown preadipocyte programming. Given that KDM5C levels are higher in females compared to males, our findings suggest that sex differences in white and brown preadipocyte gene regulation may contribute to sex differences in adipose tissue function.

3.
Mol Metab ; 80: 101870, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184275

RESUMEN

OBJECTIVE: Bone morphogenetic protein (BMP) signaling is intricately involved in adipose tissue development. BMP7 together with BMP4 have been implicated in brown adipocyte differentiation but their roles during development remains poorly specified. Matrix Gla protein (MGP) inhibits BMP4 and BMP7 and is expressed in endothelial and progenitor cells. The objective was to determine the role of MGP in brown adipose tissue (BAT) development. METHODS: The approach included global and cell-specific Mgp gene deletion in combination with RNA analysis, immunostaining, thermogenic activity, and in vitro studies. RESULTS: The results revealed that MGP directs brown adipogenesis at two essential steps. Endothelial-derived MGP limits triggering of white adipogenic differentiation in the perivascular region, whereas MGP derived from adipose cells supports the transition of CD142-expressing progenitor cells to brown adipogenic maturity. Both steps were important to optimize the thermogenic function of BAT. Furthermore, MGP derived from both sources impacted vascular growth. Reduction of MGP in either endothelial or adipose cells expanded the endothelial cell population, suggesting that MGP is a factor in overall plasticity of adipose tissue. CONCLUSION: MGP displays a dual and cell-specific function in BAT, essentially creating a "cellular shuttle" that coordinates brown adipogenic differentiation with vascular growth during development.


Asunto(s)
Adipocitos Marrones , Proteína Gla de la Matriz , Adipocitos Marrones/metabolismo , Diferenciación Celular , Tejido Adiposo Pardo/metabolismo , Adipogénesis/fisiología
4.
Cells ; 12(18)2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37759473

RESUMEN

Intracranial hypertension (ICP) and visual impairment intracranial pressure (VIIP) are some of the sequels of long-term space missions. Here we sought to determine how space microgravity (µG) impacts the metabolomics profile of oligodendrocyte progenitors (OLPs), the myelin-forming cells in the central nervous system. We report increased glutamate and energy metabolism while the OLPs were in space for 26 days. We also show that after space flight, OLPs (SPC OLPs) display significantly increased mitochondrial respiration and glycolysis. These data are in agreement with our previous work using simulated microgravity. In addition, our global metabolomics approach allowed for the discovery of endogenous metabolites secreted by OLPs while in space that are significantly modulated by microgravity. Our results provide, for the first time, relevant information about the energetic state of OLPs while in space and after space flight. The functional and molecular relevance of these specific pathways are promising targets for therapeutic intervention for humans in long-term space missions to the moon, Mars and beyond.


Asunto(s)
Metabolómica , Secretoma , Humanos , Oligodendroglía , Vaina de Mielina , Ácido Glutámico
6.
bioRxiv ; 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36798326

RESUMEN

Background: We have generated a rat model similar to the Four Core Genotypes mouse model, allowing comparison of XX and XY rats with the same type of gonad. The model detects novel sex chromosome effects (XX vs. XY) that contribute to sex differences in any rat phenotype. Methods: XY rats were produced with an autosomal transgene of Sry , the testis-determining factor gene, which were fathers of XX and XY progeny with testes. In other rats, CRISPR-Cas9 technology was used to remove Y chromosome factors that initiate testis differentiation, producing fertile XY gonadal females that have XX and XY progeny with ovaries. These groups can be compared to detect sex differences caused by sex chromosome complement (XX vs. XY) and/or by gonadal hormones (rats with testes vs. ovaries). Results: We have measured numerous phenotypes to characterize this model, including gonadal histology, breeding performance, anogenital distance, levels of reproductive hormones, body and organ weights, and central nervous system sexual dimorphisms. Serum testosterone levels were comparable in adult XX and XY gonadal males. Numerous phenotypes previously found to be sexually differentiated by the action of gonadal hormones were found to be similar in XX and XY rats with the same type of gonad, suggesting that XX and XY rats with the same type of gonad have comparable levels of gonadal hormones at various stages of development. Conclusion: The results establish a powerful new model to discriminate sex chromosome and gonadal hormone effects that cause sexual differences in rat physiology and disease.

7.
Nature ; 613(7942): 160-168, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477540

RESUMEN

Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3ß) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3ß is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3ß have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3ß is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3ß associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3ß-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.


Asunto(s)
Adipocitos , Proteínas de Unión al Calcio , Metabolismo de los Lípidos , Proteínas de la Membrana , Animales , Femenino , Humanos , Ratones , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Placenta , Triglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Ácidos Grasos/metabolismo , Hipotermia/metabolismo , Termogénesis
8.
Nat Commun ; 13(1): 7037, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396639

RESUMEN

Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective cytokine in multiple models of retinal degeneration. To understand mechanisms underlying its broad neuroprotective effects, we have investigated the influence of CNTF on metabolism in a mouse model of photoreceptor degeneration. CNTF treatment improves the morphology of photoreceptor mitochondria, but also leads to reduced oxygen consumption and suppressed respiratory chain activities. Molecular analyses show elevated glycolytic pathway gene transcripts and active enzymes. Metabolomics analyses detect significantly higher levels of ATP and the energy currency phosphocreatine, elevated glycolytic pathway metabolites, increased TCA cycle metabolites, lipid biosynthetic pathway intermediates, nucleotides, and amino acids. Moreover, CNTF treatment restores the key antioxidant glutathione to the wild type level. Therefore, CNTF significantly impacts the metabolic status of degenerating retinas by promoting aerobic glycolysis and augmenting anabolic activities. These findings reveal cellular mechanisms underlying enhanced neuronal viability and suggest potential therapies for treating retinal degeneration.


Asunto(s)
Factor Neurotrófico Ciliar , Degeneración Retiniana , Ratones , Animales , Factor Neurotrófico Ciliar/genética , Factor Neurotrófico Ciliar/metabolismo , Degeneración Retiniana/terapia , Neuroprotección , Retina/metabolismo , Glucólisis
9.
Sci Rep ; 12(1): 16428, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180720

RESUMEN

Grip strength is a valuable preclinical assay to study muscle physiology in disease and aging by directly determining changes in muscle force generation in active laboratory mice. Existing methods to statistically evaluate grip strength, however, have limitations in the power and scope of the physiological features that are assessed. We therefore designed a microcontroller whose serial measure of resistance-based force enables the simultaneous readout of (1) peak grip strength, (2) force profile (the non-linear progress of force exerted throughout a standard grip strength trial), and (3) cumulative force profile (the integral of force with respect to time of a single grip strength trial). We hypothesized that muscle pathologies of different etiologies have distinct effects on these parameters. To test this, we used our apparatus to assess the three muscle parameters in mice with impaired muscle function resulting from surgically induced peripheral pain, genetic peripheral neuropathy, adverse muscle effects induced by statin drug, and metabolic alterations induced by a high-fat diet. Both surgically induced peripheral nerve injury and statin-associated muscle damage diminished grip strength and force profile, without affecting cumulative force profile. Conversely, genetic peripheral neuropathy resulting from lipin 1 deficiency led to a marked reduction to all three parameters. A chronic high-fat diet led to reduced grip strength and force profile when normalized to body weight. In high-fat fed mice that were exerted aerobically and allowed to recover for 30 min, male mice exhibited impaired force profile parameters, which female mice were more resilient. Thus, simultaneous analysis of peak grip strength, force profile and cumulative force profile distinguishes the muscle impairments that result from distinct perturbations and may reflect distinct motor unit recruitment strategies.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Animales , Dieta , Femenino , Fuerza de la Mano/fisiología , Masculino , Ratones , Fuerza Muscular/fisiología , Músculos
10.
Nat Commun ; 13(1): 3850, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787630

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) exhibits a sex bias, being more common in women than men, and we hypothesize that mitochondrial sex differences might underlie this bias. As part of genetic studies of heart failure in mice, we observe that heart mitochondrial DNA levels and function tend to be reduced in females as compared to males. We also observe that expression of genes encoding mitochondrial proteins are higher in males than females in human cohorts. We test our hypothesis in a panel of genetically diverse inbred strains of mice, termed the Hybrid Mouse Diversity Panel (HMDP). Indeed, we find that mitochondrial gene expression is highly correlated with diastolic function, a key trait in HFpEF. Consistent with this, studies of a "two-hit" mouse model of HFpEF confirm that mitochondrial function differs between sexes and is strongly associated with a number of HFpEF traits. By integrating data from human heart failure and the mouse HMDP cohort, we identify the mitochondrial gene Acsl6 as a genetic determinant of diastolic function. We validate its role in HFpEF using adenoviral over-expression in the heart. We conclude that sex differences in mitochondrial function underlie, in part, the sex bias in diastolic function.


Asunto(s)
Insuficiencia Cardíaca , Animales , Coenzima A Ligasas , Diástole/genética , Femenino , Insuficiencia Cardíaca/metabolismo , Humanos , Masculino , Ratones , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Caracteres Sexuales , Volumen Sistólico/genética
12.
Acta Pharm Sin B ; 12(4): 1624-1635, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35251918

RESUMEN

SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic. As part of the innate immune response to viral infection, type I interferons (IFN-I) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes (ISGs), that collectively foster an antiviral state. We report here the identification of a group of type I interferon suppressed genes, including fatty acid synthase (FASN), which are involved in lipid metabolism. Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection. More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern. Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type I interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19.

13.
Sci Rep ; 12(1): 643, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022484

RESUMEN

Acute kidney injury (AKI) is common in patients, causes systemic sequelae, and predisposes patients to long-term cardiovascular disease. To date, studies of the effects of AKI on cardiovascular outcomes have only been performed in male mice. We recently demonstrated that male mice developed diastolic dysfunction, hypertension and reduced cardiac ATP levels versus sham 1 year after AKI. The effects of female sex on long-term cardiac outcomes after AKI are unknown. Therefore, we examined the 1-year cardiorenal outcomes following a single episode of bilateral renal ischemia-reperfusion injury in female C57BL/6 mice using a model with similar severity of AKI and performed concomitantly to recently published male cohorts. To match the severity of AKI between male and female mice, females received 34 min of ischemia time compared to 25 min in males. Serial renal function, echocardiograms and blood pressure assessments were performed throughout the 1-year study. Renal histology, and cardiac and plasma metabolomics and mitochondrial function in the heart and kidney were evaluated at 1 year. Measured glomerular filtration rates (GFR) were similar between male and female mice throughout the 1-year study period. One year after AKI, female mice had preserved diastolic function, normal blood pressure, and preserved levels of cardiac ATP. Compared to males, females demonstrated pathway enrichment in arginine metabolism and amino acid related energy production in both the heart and plasma, and glutathione in the plasma. Cardiac mitochondrial respiration in Complex I of the electron transport chain demonstrated improved mitochondrial function in females compared to males, regardless of AKI or sham. This is the first study to examine the long-term cardiac effects of AKI on female mice and indicate that there are important sex-related cardiorenal differences. The role of female sex in cardiovascular outcomes after AKI merits further investigation.


Asunto(s)
Lesión Renal Aguda
14.
Nat Metab ; 3(11): 1552-1568, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34697471

RESUMEN

We have previously suggested a central role for mitochondria in the observed sex differences in metabolic traits. However, the mechanisms by which sex differences affect adipose mitochondrial function and metabolic syndrome are unclear. Here we show that in both mice and humans, adipose mitochondrial functions are elevated in females and are strongly associated with adiposity, insulin resistance and plasma lipids. Using a panel of diverse inbred strains of mice, we identify a genetic locus on mouse chromosome 17 that controls mitochondrial mass and function in adipose tissue in a sex- and tissue-specific manner. This locus contains Ndufv2 and regulates the expression of at least 89 mitochondrial genes in females, including oxidative phosphorylation genes and those related to mitochondrial DNA content. Overexpression studies indicate that Ndufv2 mediates these effects by regulating supercomplex assembly and elevating mitochondrial reactive oxygen species production, which generates a signal that increases mitochondrial biogenesis.


Asunto(s)
Tejido Adiposo/metabolismo , Biomarcadores , Regulación de la Expresión Génica , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , NADH Deshidrogenasa/genética , Adiposidad/genética , Animales , Respiración de la Célula/genética , Cromosomas Humanos Par 17 , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Humanos , Masculino , Síndrome Metabólico/diagnóstico , Ratones , NADH Deshidrogenasa/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Especies Reactivas de Oxígeno/metabolismo , Factores Sexuales
15.
Redox Biol ; 46: 102087, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34411987

RESUMEN

Beige adipocyte mitochondria contribute to thermogenesis by uncoupling and by ATP-consuming futile cycles. Since uncoupling may inhibit ATP synthesis, it is expected that expenditure through ATP synthesis is segregated to a disparate population of mitochondria. Recent studies in mouse brown adipocytes identified peridroplet mitochondria (PDM) as having greater ATP synthesis and pyruvate oxidation capacities, while cytoplasmic mitochondria have increased fatty acid oxidation and uncoupling capacities. However, the occurrence of PDM in humans and the processes that result in their expansion have not been elucidated. Here, we describe a novel high-throughput assay to quantify PDM that is successfully applied to white adipose tissue from mice and humans. Using this approach, we found that PDM content varies between white and brown fat in both species. We used adipose tissue from pheochromocytoma (Pheo) patients as a model of white adipose tissue browning, which is characterized by an increase in the capacity for energy expenditure. In contrast with control subjects, PDM content was robustly increased in the periadrenal fat of Pheo patients. Remarkably, bioenergetic changes associated with browning were primarily localized to PDM compared to cytoplasmic mitochondria (CM). PDM isolated from periadrenal fat of Pheo patients had increased ATP-linked respiration, Complex IV content and activity, and maximal respiratory capacity. We found similar changes in a mouse model of re-browning where PDM content in whitened brown adipose tissue was increased upon re-browning induced by decreased housing temperature. Taken together, this study demonstrates the existence of PDM as a separate functional entity in humans and that browning in both mice and humans is associated with a robust expansion of peri-droplet mitochondria characterized by increased ATP synthesis linked respiration.


Asunto(s)
Tejido Adiposo Pardo , Termogénesis , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético , Humanos , Ratones , Mitocondrias/metabolismo
16.
Nat Metab ; 3(7): 940-953, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34282353

RESUMEN

Males and females exhibit striking differences in the prevalence of metabolic traits including hepatic steatosis, a key driver of cardiometabolic morbidity and mortality. RNA methylation is a widespread regulatory mechanism of transcript turnover. Here, we show that presence of the RNA modification N6-methyladenosine (m6A) triages lipogenic transcripts for degradation and guards against hepatic triglyceride accumulation. In male but not female mice, this protective checkpoint stalls under lipid-rich conditions. Loss of m6A control in male livers increases hepatic triglyceride stores, leading to a more 'feminized' hepatic lipid composition. Crucially, liver-specific deletion of the m6A complex protein Mettl14 from male and female mice significantly diminishes sex-specific differences in steatosis. We further surmise that the m6A installing machinery is subject to transcriptional control by the sex-responsive BCL6-STAT5 axis in response to dietary conditions. These data show that m6A is essential for precise and synchronized control of lipogenic enzyme activity and provide insights into the molecular basis for the existence of sex-specific differences in hepatic lipid traits.


Asunto(s)
Adenosina/análogos & derivados , Metabolismo Energético , Regulación de la Expresión Génica , Carácter Cuantitativo Heredable , Transcripción Genética , Adenosina/metabolismo , Animales , Femenino , Metabolismo de los Lípidos , Masculino , Metilación , Ratones , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factor de Transcripción STAT5/metabolismo , Factores Sexuales , Transducción de Señal
17.
Nature ; 590(7846): 480-485, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33597756

RESUMEN

Obesity increases the risk of mortality because of metabolic sequelae such as type 2 diabetes and cardiovascular disease1. Thermogenesis by adipocytes can counteract obesity and metabolic diseases2,3. In thermogenic fat, creatine liberates a molar excess of mitochondrial ADP-purportedly via a phosphorylation cycle4-to drive thermogenic respiration. However, the proteins that control this futile creatine cycle are unknown. Here we show that creatine kinase B (CKB) is indispensable for thermogenesis resulting from the futile creatine cycle, during which it traffics to mitochondria using an internal mitochondrial targeting sequence. CKB is powerfully induced by thermogenic stimuli in both mouse and human adipocytes. Adipocyte-selective inactivation of Ckb in mice diminishes thermogenic capacity, increases predisposition to obesity, and disrupts glucose homeostasis. CKB is therefore a key effector of the futile creatine cycle.


Asunto(s)
Tejido Adiposo/metabolismo , Forma BB de la Creatina-Quinasa/metabolismo , Creatina/metabolismo , Termogénesis , Adipocitos/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/enzimología , Animales , Forma BB de la Creatina-Quinasa/deficiencia , Forma BB de la Creatina-Quinasa/genética , AMP Cíclico/metabolismo , Metabolismo Energético/genética , Femenino , Glucosa/metabolismo , Homeostasis , Humanos , Masculino , Ratones , Mitocondrias/metabolismo , Obesidad/enzimología , Obesidad/genética , Obesidad/metabolismo , Transducción de Señal
18.
STAR Protoc ; 2(1): 100243, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33458705

RESUMEN

Mitochondria play a central role in lipid metabolism and can bind to lipid droplets. However, the role and functional specialization of the population of peridroplet mitochondria (PDMs) remain unclear, as methods to isolate functional PDMs were not developed until recently. Here, we describe an approach to isolate intact PDMs from murine brown adipose tissue based on their adherence to lipid droplets. PDMs isolated using our approach can be used to study their specialized function by respirometry. For complete information on the use and execution of this protocol, please refer to Benador et al. (2018).


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Adipocitos Marrones/citología , Tejido Adiposo Pardo/citología , Animales , Ratones
19.
Mol Syst Biol ; 17(1): e9684, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33417276

RESUMEN

To elucidate the contributions of specific lipid species to metabolic traits, we integrated global hepatic lipid data with other omics measures and genetic data from a cohort of about 100 diverse inbred strains of mice fed a high-fat/high-sucrose diet for 8 weeks. Association mapping, correlation, structure analyses, and network modeling revealed pathways and genes underlying these interactions. In particular, our studies lead to the identification of Ifi203 and Map2k6 as regulators of hepatic phosphatidylcholine homeostasis and triacylglycerol accumulation, respectively. Our analyses highlight mechanisms for how genetic variation in hepatic lipidome can be linked to physiological and molecular phenotypes, such as microbiota composition.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hígado Graso/genética , Glucosa/efectos adversos , Resistencia a la Insulina/genética , MAP Quinasa Quinasa 6/genética , Proteínas Nucleares/genética , Animales , Modelos Animales de Enfermedad , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Variación Genética , Lipidómica , Masculino , Ratones , Fosfatidilcolinas/metabolismo , Triglicéridos/metabolismo
20.
J Biol Chem ; 295(44): 15054-15069, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32855239

RESUMEN

Strategies to increase energy expenditure are an attractive approach to reduce excess fat storage and body weight to improve metabolic health. In mammals, uncoupling protein-1 (UCP1) in brown and beige adipocytes uncouples fatty acid oxidation from ATP generation in mitochondria and promotes energy dissipation as heat. We set out to identify small molecules that enhance UCP1 levels and activity using a high-throughput screen of nearly 12,000 compounds in mouse brown adipocytes. We identified a family of compounds that increase Ucp1 expression and mitochondrial activity (including un-coupled respiration) in mouse brown adipocytes and human brown and white adipocytes. The mechanism of action may be through compound binding to A kinase anchoring protein (AKAP) 1, modulating its localization to mitochondria and its interaction with protein kinase A (PKA), a known node in the ß-adrenergic signaling pathway. In mice, the hit compound increased body temperature, UCP1 protein levels, and thermogenic gene expression. Some of the compound effects on mitochondrial function were UCP1- or AKAP1-independent, suggesting compound effects on multiple nodes of energy regulation. Overall, our results highlight a role for AKAP1 in thermogenesis, uncoupled respiration, and regulation energy balance.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1/biosíntesis , Adipocitos Marrones/enzimología , Adipocitos Marrones/metabolismo , Adipocitos Blancos/enzimología , Adipocitos Blancos/metabolismo , Animales , Células Cultivadas , Metabolismo Energético , Activación Enzimática , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA