Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Pathog ; 18(6): e1010573, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35679349

RESUMEN

Powassan virus (POWV) is an emerging tick borne flavivirus (TBFV) that causes severe neuroinvasive disease. Currently, there are no approved treatments or vaccines to combat POWV infection. Here, we generated and characterized a nanoparticle immunogen displaying domain III (EDIII) of the POWV E glycoprotein. Immunization with POWV EDIII presented on nanoparticles resulted in significantly higher serum neutralizing titers against POWV than immunization with monomeric POWV EDIII. Furthermore, passive transfer of EDIII-reactive sera protected against POWV challenge in vivo. We isolated and characterized a panel of EDIII-specific monoclonal antibodies (mAbs) and identified several that potently inhibit POWV infection and engage distinct epitopes within the lateral ridge and C-C' loop of the EDIII. By creating a subunit-based nanoparticle immunogen with vaccine potential that elicits antibodies with protective activity against POWV infection, our findings enhance our understanding of the molecular determinants of antibody-mediated neutralization of TBFVs.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Nanopartículas , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Ratones
2.
Cell Chem Biol ; 29(5): 811-823.e7, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35231399

RESUMEN

Zika virus (ZIKV) is a flavivirus that can cause severe disease, but there are no approved treatments or vaccines. A complication for flavivirus vaccine development is the potential of immunogens to enhance infection via antibody-dependent enhancement (ADE), a process mediated by poorly neutralizing and cross-reactive antibodies. Thus, there is a great need to develop immunogens that minimize the potential to elicit enhancing antibodies. Here we utilized structure-based protein engineering to develop "resurfaced" (rs) ZIKV immunogens based on E glycoprotein domain III (ZDIIIs), in which epitopes bound by variably neutralizing antibodies were masked by combinatorial mutagenesis. We identified one resurfaced ZDIII immunogen (rsZDIII-2.39) that elicited a protective but immune-focused response. Compared to wild type ZDIII, immunization with resurfaced rsZDIII-2.39 protein nanoparticles produced fewer numbers of ZIKV EDIII antigen-reactive B cells and elicited serum that had a lower magnitude of induced ADE against dengue virus serotype 1 (DENV1) Our findings enhance our understanding of the structural and functional determinants of antibody protection against ZIKV.


Asunto(s)
Virus del Dengue , Nanopartículas , Infección por el Virus Zika , Virus Zika , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus del Dengue/química , Humanos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Infección por el Virus Zika/prevención & control
3.
PLoS Comput Biol ; 18(1): e1009778, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041647

RESUMEN

The clinical outcome of SARS-CoV-2 infection varies widely between individuals. Machine learning models can support decision making in healthcare by assessing fatality risk in patients that do not yet show severe signs of COVID-19. Most predictive models rely on static demographic features and clinical values obtained upon hospitalization. However, time-dependent biomarkers associated with COVID-19 severity, such as antibody titers, can substantially contribute to the development of more accurate outcome models. Here we show that models trained on immune biomarkers, longitudinally monitored throughout hospitalization, predicted mortality and were more accurate than models based on demographic and clinical data upon hospital admission. Our best-performing predictive models were based on the temporal analysis of anti-SARS-CoV-2 Spike IgG titers, white blood cell (WBC), neutrophil and lymphocyte counts. These biomarkers, together with C-reactive protein and blood urea nitrogen levels, were found to correlate with severity of disease and mortality in a time-dependent manner. Shapley additive explanations of our model revealed the higher predictive value of day post-symptom onset (PSO) as hospitalization progresses and showed how immune biomarkers contribute to predict mortality. In sum, we demonstrate that the kinetics of immune biomarkers can inform clinical models to serve as a powerful monitoring tool for predicting fatality risk in hospitalized COVID-19 patients, underscoring the importance of contextualizing clinical parameters according to their time post-symptom onset.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19 , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/terapia , Biología Computacional , Diagnóstico por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
4.
mBio ; 12(5): e0247321, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34607456

RESUMEN

Most known SARS-CoV-2 neutralizing antibodies (nAbs), including those approved by the FDA for emergency use, inhibit viral infection by targeting the receptor-binding domain (RBD) of the spike (S) protein. Variants of concern (VOC) carrying mutations in the RBD or other regions of S reduce the effectiveness of many nAbs and vaccines by evading neutralization. Therefore, therapies that are less susceptible to resistance are urgently needed. Here, we characterized the memory B-cell repertoire of COVID-19 convalescent donors and analyzed their RBD and non-RBD nAbs. We found that many of the non-RBD-targeting nAbs were specific to the N-terminal domain (NTD). Using neutralization assays with authentic SARS-CoV-2 and a recombinant vesicular stomatitis virus carrying SARS-CoV-2 S protein (rVSV-SARS2), we defined a panel of potent RBD and NTD nAbs. Next, we used a combination of neutralization-escape rVSV-SARS2 mutants and a yeast display library of RBD mutants to map their epitopes. The most potent RBD nAb competed with hACE2 binding and targeted an epitope that includes residue F490. The most potent NTD nAb epitope included Y145, K150, and W152. As seen with some of the natural VOC, the neutralization potencies of COVID-19 convalescent-phase sera were reduced by 4- to 16-fold against rVSV-SARS2 bearing Y145D, K150E, or W152R spike mutations. Moreover, we found that combining RBD and NTD nAbs did not enhance their neutralization potential. Notably, the same combination of RBD and NTD nAbs limited the development of neutralization-escape mutants in vitro, suggesting such a strategy may have higher efficacy and utility for mitigating the emergence of VOC. IMPORTANCE The U.S. FDA has issued emergency use authorizations (EUAs) for multiple investigational monoclonal antibody (MAb) therapies for the treatment of mild to moderate COVID-19. These MAb therapeutics are solely targeting the receptor-binding domain of the SARS-CoV-2 spike protein. However, the N-terminal domain of the spike protein also carries crucial neutralizing epitopes. Here, we show that key mutations in the N-terminal domain can reduce the neutralizing capacity of convalescent-phase COVID-19 sera. We report that a combination of two neutralizing antibodies targeting the receptor-binding and N-terminal domains may be beneficial to combat the emergence of virus variants.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/genética , COVID-19/inmunología , Mutación/inmunología , Motivos de Unión al ARN/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Humanos , Pruebas de Neutralización
5.
Cell ; 184(13): 3486-3501.e21, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34077751

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a World Health Organization priority pathogen. CCHFV infections cause a highly lethal hemorrhagic fever for which specific treatments and vaccines are urgently needed. Here, we characterize the human immune response to natural CCHFV infection to identify potent neutralizing monoclonal antibodies (nAbs) targeting the viral glycoprotein. Competition experiments showed that these nAbs bind six distinct antigenic sites in the Gc subunit. These sites were further delineated through mutagenesis and mapped onto a prefusion model of Gc. Pairwise screening identified combinations of non-competing nAbs that afford synergistic neutralization. Further enhancements in neutralization breadth and potency were attained by physically linking variable domains of synergistic nAb pairs through bispecific antibody (bsAb) engineering. Although multiple nAbs protected mice from lethal CCHFV challenge in pre- or post-exposure prophylactic settings, only a single bsAb, DVD-121-801, afforded therapeutic protection. DVD-121-801 is a promising candidate suitable for clinical development as a CCHFV therapeutic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Fiebre Hemorrágica de Crimea/inmunología , Sobrevivientes , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Antígenos Virales/metabolismo , Fenómenos Biofísicos , Chlorocebus aethiops , Mapeo Epitopo , Epítopos/metabolismo , Femenino , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Fiebre Hemorrágica de Crimea/prevención & control , Humanos , Inmunoglobulina G/metabolismo , Masculino , Ratones , Pruebas de Neutralización , Unión Proteica , Ingeniería de Proteínas , Proteínas Recombinantes/inmunología , Células Vero , Proteínas Virales/química
6.
mSphere ; 6(2)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883259

RESUMEN

The coronavirus disease 2019 (COVID-19) global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to place an immense burden on societies and health care systems. A key component of COVID-19 control efforts is serological testing to determine the community prevalence of SARS-CoV-2 exposure and quantify individual immune responses to prior SARS-CoV-2 infection or vaccination. Here, we describe a laboratory-developed antibody test that uses readily available research-grade reagents to detect SARS-CoV-2 exposure in patient blood samples with high sensitivity and specificity. We further show that this sensitive test affords the estimation of viral spike-specific IgG titers from a single sample measurement, thereby providing a simple and scalable method to measure the strength of an individual's immune response. The accuracy, adaptability, and cost-effectiveness of this test make it an excellent option for clinical deployment in the ongoing COVID-19 pandemic.IMPORTANCE Serological surveillance has become an important public health tool during the COVID-19 pandemic. Detection of protective antibodies and seroconversion after SARS-CoV-2 infection or vaccination can help guide patient care plans and public health policies. Serology tests can detect antibodies against past infections; consequently, they can help overcome the shortcomings of molecular tests, which can detect only active infections. This is important, especially when considering that many COVID-19 patients are asymptomatic. In this study, we describe an enzyme-linked immunosorbent assay (ELISA)-based qualitative and quantitative serology test developed to measure IgG and IgA antibodies against the SARS-CoV-2 spike glycoprotein. The test can be deployed using commonly available laboratory reagents and equipment and displays high specificity and sensitivity. Furthermore, we demonstrate that IgG titers in patient samples can be estimated from a single measurement, enabling the assay's use in high-throughput clinical environments.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Especificidad de Anticuerpos , COVID-19/epidemiología , Prueba Serológica para COVID-19/estadística & datos numéricos , Estudios de Casos y Controles , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/estadística & datos numéricos , Monitoreo Epidemiológico , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Pandemias , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
7.
Arch Pathol Lab Med ; 145(8): 929-936, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33821952

RESUMEN

CONTEXT.­: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) testing is used for serosurveillance and will be important to evaluate vaccination status. Given the urgency to release coronavirus disease 2019 (COVID-19) serology tests, most manufacturers have developed qualitative tests. OBJECTIVE.­: To evaluate clinical performance of 6 different SARS-CoV-2 IgG assays and their quantitative results to better elucidate the clinical role of serology testing in COVID-19. DESIGN.­: Six SARS-CoV-2 IgG assays were tested using remnant specimens from 190 patients. Sensitivity and specificity were evaluated for each assay with the current manufacturer's cutoff and a lower cutoff. A numeric result analysis and discrepancy analysis were performed. RESULTS.­: Specificity was higher than 93% for all assays, and sensitivity was higher than 80% for all assays (≥7 days post-polymerase chain reaction testing). Inpatients with more severe disease had higher numeric values compared with health care workers with mild or moderate disease. Several discrepant serology results were those just below the manufacturers' cutoff. CONCLUSIONS.­: Severe acute respiratory syndrome coronavirus 2 IgG antibody testing can aid in the diagnosis of COVID-19, especially with negative polymerase chain reaction. Quantitative COVID-19 IgG results are important to better understand the immunologic response and disease course of this novel virus and to assess immunity as part of future vaccination programs.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/inmunología , Inmunoglobulina G/sangre , SARS-CoV-2/inmunología , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de Ácido Nucleico para COVID-19/estadística & datos numéricos , Prueba Serológica para COVID-19/estadística & datos numéricos , Estudios de Cohortes , Humanos , Ciudad de Nueva York/epidemiología , Pandemias , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad
8.
ACS Omega ; 6(1): 85-102, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33458462

RESUMEN

Coronavirus disease 2019 (COVID-19) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike (S) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F and ExpiCHO-S cells, two different cell lines selected for increased protein expression. We show that ExpiCHO-S cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural (cryo-EM) characterizations of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high-quality S protein (nonaggregated, uniform material with appropriate biochemical and biophysical properties), and analysis of 20 deposited S protein cryo-EM structures reveals conformation plasticity in the region composed of amino acids 614-642 and 828-854. Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome and report no novel binding partners and notably fail to validate the Spike:CD147 interaction. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural, and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.

9.
JCI Insight ; 6(4)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33476300

RESUMEN

Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as a treatment for coronavirus disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200 mL of CCP with a spike protein IgG titer ≥ 1:2430 (median 1:47,385) within 72 hours of admission with propensity score-matched controls cared for at a medical center in the Bronx, between April 13 and May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroid use, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared with matched controls, CCP recipients less than 65 years had 4-fold lower risk of mortality and 4-fold lower risk of deterioration in oxygenation or mortality at day 28. For CCP recipients, pretransfusion spike protein IgG, IgM, and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients less than 65 years, but data from controlled trials are needed to validate this finding and establish the effect of aging on CCP efficacy.


Asunto(s)
Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , COVID-19/terapia , SARS-CoV-2/inmunología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/virología , Femenino , Mortalidad Hospitalaria , Humanos , Inmunización Pasiva/métodos , Masculino , Persona de Mediana Edad , Ciudad de Nueva York/epidemiología , Puntaje de Propensión , Estudios Retrospectivos , Glicoproteína de la Espiga del Coronavirus/inmunología , Resultado del Tratamiento , Sueroterapia para COVID-19
10.
medRxiv ; 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33300012

RESUMEN

Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as treatment for Coronavirus Disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200mL of CCP with a Spike protein IgG titer ≥1:2,430 (median 1:47,385) within 72 hours of admission to propensity score-matched controls cared for at a medical center in the Bronx, between April 13 to May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroids, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared to matched controls, CCP recipients <65 years had 4-fold lower mortality and 4-fold lower deterioration in oxygenation or mortality at day 28. For CCP recipients, pre-transfusion Spike protein IgG, IgM and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients <65 years, but data from controlled trials is needed to validate this finding and establish the effect of ageing on CCP efficacy.

11.
medRxiv ; 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32935116

RESUMEN

The COVID-19 global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to place an immense burden on societies and healthcare systems. A key component of COVID-19 control efforts is serologic testing to determine the community prevalence of SARS-CoV-2 exposure and quantify individual immune responses to prior infection or vaccination. Here, we describe a laboratory-developed antibody test that uses readily available research-grade reagents to detect SARS-CoV-2 exposure in patient blood samples with high sensitivity and specificity. We further show that this test affords the estimation of viral spike-specific IgG titers from a single sample measurement, thereby providing a simple and scalable method to measure the strength of an individual's immune response. The accuracy, adaptability, and cost-effectiveness of this test makes it an excellent option for clinical deployment in the ongoing COVID-19 pandemic.

12.
Cell Host Microbe ; 28(3): 486-496.e6, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32738193

RESUMEN

There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, define correlates of immune protection, and down-select candidate antivirals. Here, we generate a highly infectious recombinant vesicular stomatitis virus (VSV) bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein and show that this recombinant virus, rVSV-SARS-CoV-2 S, closely resembles SARS-CoV-2 in its entry-related properties. The neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in a high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S, and neutralization of rVSV-SARS-CoV-2 S and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific therapeutics and for mechanistic studies of viral entry and its inhibition.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/fisiología , Virus de la Estomatitis Vesicular Indiana/fisiología , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/farmacología , Betacoronavirus/genética , Betacoronavirus/fisiología , COVID-19 , Vacunas contra la COVID-19 , Línea Celular , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Evaluación Preclínica de Medicamentos , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Mutación , Pruebas de Neutralización , Pandemias/prevención & control , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/fisiología , Neumonía Viral/prevención & control , Neumonía Viral/terapia , Receptores Virales/genética , Receptores Virales/fisiología , Recombinación Genética , SARS-CoV-2 , Serina Endopeptidasas/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Virus de la Estomatitis Vesicular Indiana/genética , Vacunas Virales/genética , Vacunas Virales/inmunología , Internalización del Virus , Replicación Viral/genética , Tratamiento Farmacológico de COVID-19
13.
bioRxiv ; 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32587972

RESUMEN

Coronavirus disease 2019 ( COVID-19 ) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2 ), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike ( S ) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F ™ and ExpiCHO-S ™ cells, two different cell lines selected for increased expression of secreted glycoproteins. We show that ExpiCHO-S ™ cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural ( cryo-EM ) characterization of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high quality S protein (non-aggregated, uniform material with appropriate biochemical and biophysical properties). Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs, and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.

14.
bioRxiv ; 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32511365

RESUMEN

There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, and define correlates of immune protection, and to down-select candidate antivirals. Here, we describe a highly infectious recombinant vesicular stomatitis virus bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein that closely resembles the authentic agent in its entry-related properties. We show that the neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S and that neutralization of the rVSV and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific vaccines and therapeutics and for mechanistic studies of viral entry and its inhibition.

15.
Chem Rev ; 120(6): 3210-3229, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31804810

RESUMEN

Vaccines have had a profound impact on the management and prevention of infectious disease. In addition, the development of vaccines against chronic diseases has attracted considerable interest as an approach to prevent, rather than treat, conditions such as cancer, Alzheimer's disease, and others. Subunit vaccines consist of nongenetic components of the infectious agent or disease-related epitope. In this Review, we discuss peptide-based vaccines and their potential in three therapeutic areas: infectious disease, Alzheimer's disease, and cancer. We discuss factors that contribute to vaccine efficacy and how these parameters may potentially be modulated by design. We examine both clinically tested vaccines as well as nascent approaches and explore current challenges and potential remedies. While peptide vaccines hold substantial promise in the prevention of human disease, many obstacles remain that have hampered their clinical use; thus, continued research efforts to address these challenges are warranted.


Asunto(s)
Vacunas de Subunidad , Enfermedad de Alzheimer/prevención & control , Animales , Humanos , Control de Infecciones , Neoplasias/prevención & control , Vacunas de Subunidad/farmacología
16.
J Virol ; 92(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29976679

RESUMEN

Dengue virus is the most globally prevalent mosquito-transmitted virus. Primary infection with one of four cocirculating serotypes (DENV-1 to -4) causes a febrile illness, but secondary infection with a heterologous serotype can result in severe disease, due in part to antibody-dependent enhancement of infection (ADE). In ADE, cross-reactive but nonneutralizing antibodies, or subprotective levels of neutralizing antibodies, promote uptake of antibody-opsonized virus in Fc-γ receptor-positive cells. Thus, elicitation of broadly neutralizing antibodies (bNAbs), but not nonneutralizing antibodies, is desirable for dengue vaccine development. Domain III of the envelope glycoprotein (EDIII) is targeted by bNAbs and thus is an attractive immunogen. However, immunization with EDIII results in sera with limited neutralization breadth. We developed "resurfaced" EDIII immunogens (rsDIIIs) in which the A/G strand epitope that is targeted by bNAb 4E11 is maintained but less desirable epitopes are masked. RsDIIIs bound 4E11, but not serotype-specific or nonneutralizing antibodies. One rsDIII and, unexpectedly, wild-type (WT) DENV-2 EDIII elicited cross-neutralizing antibody responses against DENV-1 to -3 in mice. While these sera were cross-neutralizing, they were not sufficiently potent to protect AG129 immunocompromised mice at a dose of 200 µl (50% focus reduction neutralization titer [FRNT50], ∼1:60 to 1:130) against mouse-adapted DENV-2. Our results provide insight into immunogen design strategies based on EDIII.IMPORTANCE Dengue virus causes approximately 390 million infections per year. Primary infection by one serotype causes a self-limiting febrile illness, but secondary infection by a heterologous serotype can result in severe dengue syndrome, which is characterized by hemorrhagic fever and shock syndrome. This severe disease is thought to arise because of cross-reactive, non- or poorly neutralizing antibodies from the primary infection that are present in serum at the time of secondary infection. These cross-reactive antibodies enhance the infection rather than controlling it. Therefore, induction of a broadly and potently neutralizing antibody response is desirable for dengue vaccine development. Here, we explore a novel strategy for developing immunogens based on domain III of the E glycoprotein, where undesirable epitopes (nonneutralizing or nonconserved) are masked by mutation. This work provides fundamental insight into the immune response to domain III that can be leveraged for future immunogen design.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/inmunología , Virus del Dengue/genética , Dominios Proteicos/genética , Proteínas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/administración & dosificación , Anticuerpos Antivirales/efectos adversos , Acrecentamiento Dependiente de Anticuerpo , Técnicas de Visualización de Superficie Celular , Reacciones Cruzadas , Dengue/virología , Vacunas contra el Dengue/inmunología , Virus del Dengue/química , Virus del Dengue/inmunología , Epítopos/inmunología , Ratones , Dominios Proteicos/inmunología , Ingeniería de Proteínas/métodos , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales/química , Proteínas Virales/genética
17.
ACS Chem Biol ; 12(5): 1235-1244, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28272868

RESUMEN

The branched-chain aminotransferase is a pyridoxal 5'-phosphate (PLP)-dependent enzyme responsible for the final step in the biosynthesis of all three branched-chain amino acids, l-leucine, l-isoleucine, and l-valine, in bacteria. We have investigated the mechanism of inactivation of the branched-chain aminotransferase from Mycobacterium tuberculosis (MtIlvE) by d- and l-cycloserine. d-Cycloserine is currently used only in the treatment of multidrug-drug-resistant tuberculosis. Our results show a time- and concentration-dependent inactivation of MtIlvE by both isomers, with l-cycloserine being a 40-fold better inhibitor of the enzyme. Minimum inhibitory concentration (MIC) studies revealed that l-cycloserine is a 10-fold better inhibitor of Mycobacterium tuberculosis growth than d-cycloserine. In addition, we have crystallized the MtIlvE-d-cycloserine inhibited enzyme, determining the structure to 1.7 Å. The structure of the covalent d-cycloserine-PMP adduct bound to MtIlvE reveals that the d-cycloserine ring is planar and aromatic, as previously observed for other enzyme systems. Mass spectrometry reveals that both the d-cycloserine- and l-cycloserine-PMP complexes have the same mass, and are likely to be the same aromatized, isoxazole product. However, the kinetics of formation of the MtIlvE d-cycloserine-PMP and MtIlvE l-cycloserine-PMP adducts are quite different. While the kinetics of the formation of the MtIlvE d-cycloserine-PMP complex can be fit to a single exponential, the formation of the MtIlvE l-cycloserine-PMP complex occurs in two steps. We propose a chemical mechanism for the inactivation of d- and l-cycloserine which suggests a stereochemically determined structural role for the differing kinetics of inactivation. These results demonstrate that the mechanism of action of d-cycloserine's activity against M. tuberculosis may be more complicated than previously thought and that d-cycloserine may compromise the in vivo activity of multiple PLP-dependent enzymes, including MtIlvE.


Asunto(s)
Cicloserina/farmacología , Mycobacterium tuberculosis/enzimología , Transaminasas/antagonistas & inhibidores , Cristalografía por Rayos X , Cinética , Estructura Molecular , Estereoisomerismo
18.
J Biol Chem ; 291(42): 22315-22326, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27566542

RESUMEN

Iron is an essential element for life, but its soluble form is scarce in the environment and is rarer in the human body. Mtb (Mycobacterium tuberculosis) produces two aryl-capped siderophores, mycobactin (MBT) and carboxymycobactin (cMBT), to chelate intracellular iron. The adenylating enzyme MbtA catalyzes the first step of mycobactin biosynthesis in two half-reactions: activation of the salicylic acid as an acyl-adenylate and ligation onto the acyl carrier protein (ACP) domain of MbtB to form covalently salicylated MbtB-ACP. We report the first apo-MbtA structure from Mycobacterium smegmatis at 2.3 Å. We demonstrate here that MbtA activity can be reversibly, post-translationally regulated by acetylation. Indeed the mycobacterial Pat (protein lysine acetyltransferase), Rv0998, specifically acetylates MbtA on lysine 546, in a cAMP-dependent manner, leading to enzyme inhibition. MbtA acetylation can be reversed by the NAD+-dependent DAc (deacetyltransferase), Rv1151c. Deletion of Pat and DAc genes in Mtb revealed distinct phenotypes for strains lacking one or the other gene at low pH and limiting iron conditions. This study establishes a direct connection between the reversible acetylation system Pat/DAc and the ability of Mtb to adapt in limited iron conditions, which is critical for mycobacterial infection.


Asunto(s)
Ligasas/metabolismo , Mycobacterium tuberculosis/enzimología , Oxazoles/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Sideróforos/biosíntesis , Acetilación , Catálisis , Humanos , Ligasas/genética , Lisina Acetiltransferasas/genética , Lisina Acetiltransferasas/metabolismo , Mycobacterium tuberculosis/genética , Dominios Proteicos , Sideróforos/genética
19.
J Biol Chem ; 291(13): 7060-9, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26858255

RESUMEN

Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Glucólisis/genética , Mycobacterium tuberculosis/metabolismo , Piruvato Quinasa/metabolismo , Ácido Aconítico/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Regulación Alostérica , Animales , Proteínas Bacterianas/genética , Ácido Cítrico/metabolismo , Medios de Cultivo/química , Activación Enzimática , Ácidos Grasos Volátiles/farmacología , Femenino , Eliminación de Gen , Expresión Génica , Glucosa/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucosa-6-Fosfato/farmacología , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Glucólisis/efectos de los fármacos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ratones , Ratones SCID , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Fosfoenolpiruvato/metabolismo , Piruvaldehído/metabolismo , Piruvato Quinasa/genética , Análisis de Supervivencia , Tuberculosis/microbiología , Tuberculosis/mortalidad
20.
Biochemistry ; 55(7): 989-1002, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26818562

RESUMEN

The GCN5-related N-acetyltransferases family (GNAT) is an important family of proteins that includes more than 100000 members among eukaryotes and prokaryotes. Acetylation appears as a major regulatory post-translational modification and is as widespread as phosphorylation. N-Acetyltransferases transfer an acetyl group from acetyl-CoA to a large array of substrates, from small molecules such as aminoglycoside antibiotics to macromolecules. Acetylation of proteins can occur at two different positions, either at the amino-terminal end (αN-acetylation) or at the ε-amino group (εN-acetylation) of an internal lysine residue. GNAT members have been classified into different groups on the basis of their substrate specificity, and in spite of a very low primary sequence identity, GNAT proteins display a common and conserved fold. This Current Topic reviews the different classes of bacterial GNAT proteins, their functions, their structural characteristics, and their mechanism of action.


Asunto(s)
Acetiltransferasas/metabolismo , Aminoglicósidos/metabolismo , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Farmacorresistencia Bacteriana , Modelos Moleculares , Acetilación , Acetiltransferasas/química , Acetiltransferasas/clasificación , Aminoaciltransferasas/química , Aminoaciltransferasas/clasificación , Aminoaciltransferasas/metabolismo , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Acetiltransferasas N-Terminal/química , Acetiltransferasas N-Terminal/clasificación , Acetiltransferasas N-Terminal/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA