Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Genome Biol ; 25(1): 141, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807159

RESUMEN

BACKGROUND: Reproductive isolation can result from adaptive processes (e.g., ecological speciation and mutation-order speciation) or stochastic processes such as "system drift" model. Ecological speciation predicts barriers to gene flow between populations from different environments, but not among replicate populations from the same environment. In contrast, reproductive isolation among populations independently adapted to the same/similar environment can arise from both mutation-order speciation or system drift. RESULTS: In experimentally evolved populations adapting to a hot environment for over 100 generations, we find evidence for pre- and postmating reproductive isolation. On one hand, an altered lipid metabolism and cuticular hydrocarbon composition pointed to possible premating barriers between the ancestral and replicate evolved populations. On the other hand, the pronounced gene expression differences in male reproductive genes may underlie the postmating isolation among replicate evolved populations adapting to the same environment with the same standing genetic variation. CONCLUSION: Our study confirms that replicated evolution experiments provide valuable insights into the mechanisms of speciation. The rapid emergence of the premating reproductive isolation during temperature adaptation showcases incipient ecological speciation. The potential evidence of postmating reproductive isolation among replicates gave rise to two hypotheses: (1) mutation-order speciation through a common selection on early fecundity leading to an inherent inter-locus sexual conflict; (2) system drift with genetic drift along the neutral ridges.


Asunto(s)
Calor , Aislamiento Reproductivo , Masculino , Adaptación Fisiológica/genética , Animales , Femenino , Especiación Genética , Metabolismo de los Lípidos
2.
Biol Lett ; 20(4): 20240025, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565149

RESUMEN

If a congenitally blind person learns to distinguish between a cube and a sphere by touch, would they immediately recognize these objects by sight once their vision is restored? This question, posed by Molyneux in 1688, has puzzled philosophers and scientists since then. To overcome ethical and practical difficulties in the investigation of cross-modal recognition, we studied inexperienced poultry chicks, which can be reared in darkness until the moment of a visual test with no detrimental consequences. After hatching chicks in darkness, we exposed them to either tactile smooth or tactile bumpy stimuli for 24 h. Immediately after the tactile exposure, chicks were tested in a visual recognition task, during their first experience with light. At first sight, chicks that had been exposed in the tactile modality to smooth stimuli approached the visual smooth stimulus significantly more than those exposed to the tactile bumpy stimuli. These results show that visually inexperienced chicks can solve Molyneux's problem, indicating cross-modal recognition does not require previous multimodal experience. At least in this precocial species, supra-modal brain areas appear functional already at birth. This discovery paves the way for the investigation of predisposed cross-modal cognition that does not depend on visual experience.


Asunto(s)
Reconocimiento en Psicología , Tacto , Cognición , Pollos , Animales
3.
Biol Lett ; 19(7): 20230265, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37465911

RESUMEN

Humans spontaneously match information coming from different senses, in what we call crossmodal associations. For instance, high-pitched sounds are preferentially associated with small objects, and low-pitched sounds with larger ones. Although previous studies reported crossmodal associations in mammalian species, evidence for other taxa is scarce, hindering an evolutionary understanding of this phenomenon. Here, we provide evidence of pitch-size correspondence in a reptile, the tortoise Testudo hermanni. Tortoises showed a spontaneous preference to associate a small disc (i.e. visual information about size) with a high-pitch sound (i.e. auditory information) and a larger disc to a low-pitched sound. These results suggest that crossmodal associations may be an evolutionary ancient phenomenon, potentially an organizing principle of the vertebrate brain.


Asunto(s)
Tortugas , Animales , Estimulación Acústica/métodos , Acústica , Señales (Psicología) , Mamíferos , Sonido
4.
Biol Lett ; 19(2): 20220502, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36750178

RESUMEN

At the beginning of life, inexperienced animals use evolutionary-given preferences (predispositions) to decide what stimuli to attend and approach. Stimuli that contain cues of animacy, such as face-like stimuli, biological motion and changes in speed, are particularly attractive across vertebrate taxa. A strong cue of animacy is upward movement against terrestrial gravity, because only animate objects consistently move upward. To test whether upward movement is spontaneously considered attractive already at birth, we tested the early preferences of dark-hatched chicks (Gallus gallus) for upward- versus downward-moving visual stimuli. We found that, without any previous visual experience, chicks consistently exhibited a preference to approach stimuli that move upward, against gravity. A control experiment showed that these preferences are not driven by avoidance of downward stimuli. These results show that newborn animals have a gravity prior that attracts them toward upward movement. Movement against gravity can be used as a cue of animacy to orient early approach responses in the absence of previous visual experience.


Asunto(s)
Pollos , Percepción de Movimiento , Animales , Pollos/fisiología , Percepción de Movimiento/fisiología , Movimiento , Señales (Psicología) , Evolución Biológica
5.
Sci Rep ; 12(1): 12086, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840576

RESUMEN

Left-right asymmetries in the nervous system (lateralisation) influence a broad range of behaviours, from social responses to navigation and language. The role and pathways of endogenous and environmental mechanisms in the ontogeny of lateralisation remains to be established. The domestic chick is a model of both endogenous and experience-induced lateralisation driven by light exposure. Following the endogenous rightward rotation of the embryo, the asymmetrical position in the egg results in a greater exposure of the right eye to environmental light. To identify the genetic pathways activated by asymmetric light stimulation, and their time course, we exposed embryos to different light regimes: darkness, 6 h of light and 24 h of light. We used RNA-seq to compare gene expression in the right and left retinas and telencephalon. We detected differential gene expression in right vs left retina after 6 h of light exposure. This difference was absent in the darkness condition and had already disappeared by 24 h of light exposure, suggesting that light-induced activation is a self-terminating phenomenon. This transient effect of light exposure was associated with a downregulation of the sensitive-period mediator gene DIO2 (iodothyronine deiodinase 2) in the right retina. No differences between genes expressed in the right vs. left telencephalon were detected. Gene networks associated with lateralisation were connected to vascularisation, cell motility, and the extracellular matrix. Interestingly, we know that the extracellular matrix-including the differentially expressed PDGFRB gene-is involved in morphogenesis, sensitive periods, and in the endogenous chiral mechanism of primary cilia, that drives lateralisation. Our data show a similarity between endogenous and experience-driven lateralisation, identifying functional gene networks that affect lateralisation in a specific time window.


Asunto(s)
Pollos , Lateralidad Funcional , Animales , Pollos/fisiología , Matriz Extracelular , Lateralidad Funcional/fisiología , Expresión Génica , Retina
6.
Proc Natl Acad Sci U S A ; 119(31): e2205821119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881793

RESUMEN

Insects are traditionally thought to respond to noxious stimuli in an inflexible manner, without the ability to modulate their behavior according to context. We investigated whether bumblebees' attraction to high sucrose solution concentrations reduces their avoidance of noxious heat. Bees were given the choice between either unheated or noxiously heated (55 °C) feeders with different sucrose concentrations and marked by different colors. Bees avoided noxious feeders when the unheated feeders contained high sucrose concentrations, but progressively increased feeding from noxious feeders when the sucrose concentration at unheated feeders decreased. This shows a motivational trade-off of nociceptive responses. Bees used learned color cues for their decisions, and thus the trade-off was based on processing in the brain, rather than just peripheral processing. Therefore, bees can use contextual information to modulate nociceptive behavior. This ability is consistent with a capacity for pain experiences in insects.


Asunto(s)
Abejas , Conducta Alimentaria , Nocicepción , Animales , Abejas/fisiología , Señales (Psicología) , Motivación , Soluciones , Sacarosa/química
7.
Elife ; 112022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35404231

RESUMEN

Absence is a notion that is usually captured by language-related concepts like zero or negation. Whether nonlinguistic creatures encode similar thoughts is an open question, as everyday behavior marked by absence (of food, of social partners) can be explained solely by expecting presence somewhere else. We investigated 8-day-old chicks' looking behavior in response to events violating expectations about the presence or absence of an object. We found different behavioral responses to violations of presence and absence, suggesting distinct underlying mechanisms. Importantly, chicks displayed an avian signature of novelty detection to violations of absence, namely a sex-dependent left-eye-bias. Follow-up experiments excluded accounts that would explain this bias by perceptual mismatch or by representing the object at different locations. These results suggest that the ability to spontaneously form representations about the absence of objects likely belongs to the initial cognitive repertoire of vertebrate species.


Asunto(s)
Pollos , Animales , Pollos/fisiología
8.
iScience ; 25(2): 103820, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198883

RESUMEN

Recognition of rotated images can challenge visual systems. Humans often diminish the load of cognitive tasks employing bodily actions (cognitive offloading). To investigate these phenomena from a comparative perspective, we trained eight dogs (Canis familiaris) to discriminate between bidimensional shapes. We then tested the dogs with rotated versions of the same shapes, while measuring their accuracy and head tilts. Although generalization to rotated stimuli challenged dogs (overall accuracy: 55%), three dogs performed differently from chance level with rotated stimuli. The amplitude of stimulus rotation did not influence dogs' performance. Interestingly, dogs tilted their head following the direction and amplitude of rotated stimuli. These small head movements did not influence their performance. Hence, we show that dogs might be capable of recognizing rotated 2D objects, but they do not use a cognitive offloading strategy in this task. This work paves the way to further investigation of cognitive offloading in non-human species.

9.
Behav Res Methods ; 54(4): 1715-1724, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625917

RESUMEN

Brain and behavioural asymmetries have been documented in various taxa. Many of these asymmetries involve preferential left and right eye use. However, measuring eye use through manual frame-by-frame analyses from video recordings is laborious and may lead to biases. Recent progress in technology has allowed the development of accurate tracking techniques for measuring animal behaviour. Amongst these techniques, DeepLabCut, a Python-based tracking toolbox using transfer learning with deep neural networks, offers the possibility to track different body parts with unprecedented accuracy. Exploiting the potentialities of DeepLabCut, we developed Visual Field Analysis, an additional open-source application for extracting eye use data. To our knowledge, this is the first application that can automatically quantify left-right preferences in eye use. Here we test the performance of our application in measuring preferential eye use in young domestic chicks. The comparison with manual scoring methods revealed a near perfect correlation in the measures of eye use obtained by Visual Field Analysis. With our application, eye use can be analysed reliably, objectively and at a fine scale in different experimental paradigms.


Asunto(s)
Proyectos de Investigación , Campos Visuales , Animales , Conducta Animal , Ojo , Grabación en Video
10.
Behav Processes ; 193: 104498, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34499985

RESUMEN

From the beginning of life, discriminating between familiar and unfamiliar individuals and staying in contact with conspecifics are important to establish social relationships. To better understand these early social behaviours, we studied the different responses to familiar/unfamiliar individuals in 4-day-old domestic chicks (Gallus gallus) in three genetically isolated breeds: Padovana, Polverara and Robusta maculata. Chicks discriminated between familiar and unfamiliar individuals, staying closer to familiar individuals. Social reinstatement and fear responses were measured as the average distance between subjects, the latency of the first step and exploration of the arena differed between breeds. More socially motivated chicks, that stayed in closer proximity, were less afraid of starting to move and explored the environment more extensively. Interbreed differences in social reinstatement indicate that social attraction shows genetic variability from the early stages of life.


Asunto(s)
Pollos , Conducta Social , Animales , Humanos
11.
Front Behav Neurosci ; 15: 675994, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33953662

RESUMEN

For inexperienced brains, some stimuli are more attractive than others. Human neonates and newly hatched chicks preferentially orient towards face-like stimuli, biological motion, and objects changing speed. In chicks, this enhances exposure to social partners, and subsequent attachment trough filial imprinting. Early preferences are not steady. For instance, preference for stimuli changing speed fades away after 2 days in chicks. To understand the physiological mechanisms underlying these transient responses, we tested whether early preferences for objects changing speed can be promoted by thyroid hormone 3,5,3'-triiodothyronine (T3). This hormone determines the start of imprinting's sensitive period. We found that the preference for objects changing speed can be re-established in female chicks treated with T3. Moreover, day-1 chicks treated with an inhibitor of endogenous T3 did not show any preference. These results suggest that the time windows of early predispositions and of sensitive period for imprinting are controlled by the same molecular mechanisms.

12.
Sci Rep ; 11(1): 7914, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846440

RESUMEN

Filial imprinting has become a model for understanding memory, learning and social behaviour in neonate animals. This mechanism allows the youngs of precocial bird species to learn the characteristics of conspicuous visual stimuli and display affiliative response to them. Although longer exposures to an object produce stronger preferences for it afterwards, this relation is not linear. Sometimes, chicks even prefer to approach novel rather than familiar objects. To date, little is known about how filial preferences develop across time. This study aimed to investigate filial preferences for familiar and novel imprinting objects over time. After hatching, chicks were individually placed in an arena where stimuli were displayed on two opposite screens. Using an automated setup, the duration of exposure and the type of stimuli were manipulated while the time spent at the imprinting stimulus was monitored across 6 days. We showed that prolonged exposure (3 days vs 1 day) to a stimulus produced robust filial imprinting preferences. Interestingly, with a shorter exposure (1 day), animals re-evaluated their filial preferences in functions of their spontaneous preferences and past experiences. Our study suggests that predispositions influence learning when the imprinting memories are not fully consolidated, driving animal preferences toward more predisposed stimuli.


Asunto(s)
Impronta Psicológica , Conducta Social , Animales , Pollos , Masculino
13.
Cognition ; 213: 104552, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33402251

RESUMEN

We analysed research that makes use of precocial species as animal models to describe the interaction of predisposed mechanisms and environmental factors in early learning, in particular for the development of social cognition. We also highlight the role of sensitive periods in this interaction, focusing on domestic chicks as one of the main animal models for this field. In the first section of the review, we focus on the emergence of early predispositions to attend to social partners. These attentional biases appear before any learning experience about social stimuli. However, non-specific experiences occurring during sensitive periods of the early post-natal life determine the emergence of these predisposed mechanisms for the detection of social partners. Social predispositions have an important role for the development learning-based social cognitive functions, showing the interdependence of predisposed and learned mechanisms in shaping social development. In the second part of the review we concentrate on the reciprocal interactions between filial imprinting and spontaneous (not learned) social predispositions. Reciprocal influences between these two sets of mechanisms ensure that, in the natural environment, filial imprinting will target appropriate social objects. Neural and physiological mechanisms regulating the sensitive periods for the emergence of social predispositions and for filial imprinting learning are also described.


Asunto(s)
Impronta Psicológica , Aprendizaje , Animales , Pollos
14.
Proc Natl Acad Sci U S A ; 117(39): 24047-24049, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929003

RESUMEN

At the beginning of life, inexperienced babies and human fetuses, domestic chicks, and monkeys exhibit a preference for faces and face-like configurations (three blobs arranged like an upside-down triangle). Because all of these species have parental care, it is not clear whether the early preference for faces is a mechanism for orienting toward the conspecifics and sustaining parental care, or a more general mechanism to attend to living beings. We contrasted these hypotheses by testing inexperienced hatchlings of five species of tortoises, solitary animals with no parental care. If early face-like preference evolved in the context of parental care, solitary species should not exhibit it. We observed that visually naïve tortoises prefer to approach face-like patterns over alternative configurations. The predisposition to approach face-like stimuli observed in hatchlings of these solitary species suggests the presence of an ancient mechanism, ancestral to the evolution of reptiles and mammals, that sustains the exploratory responses, and potentially learning, in both solitary and social species.


Asunto(s)
Conducta Animal , Reconocimiento Visual de Modelos , Tortugas , Animales , Animales Recién Nacidos , Conducta Exploratoria
15.
Sci Rep ; 10(1): 4480, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161330

RESUMEN

Theory predicts that social interactions can induce an alignment of behavioral asymmetries between individuals (i.e., population-level lateralization), but evidence for this effect is mixed. To understand how interaction with other individuals affects behavioral asymmetries, we systematically manipulated the social environment of Drosophila melanogaster, testing individual flies and dyads (female-male, female-female and male-male pairs). In these social contexts we measured individual and population asymmetries in individual behaviors (circling asymmetry, wing use) and dyadic behaviors (relative position and orientation between two flies) in five different genotypes. We reasoned that if coordination between individuals drives alignment of behavioral asymmetries, greater alignment at the population-level should be observed in social contexts compared to solitary individuals. We observed that the presence of other individuals influenced the behavior and position of flies but had unexpected effects on individual and population asymmetries: individual-level asymmetries were strong and modulated by the social context but population-level asymmetries were mild or absent. Moreover, the strength of individual-level asymmetries differed between strains, but this was not the case for population-level asymmetries. These findings suggest that the degree of social interaction found in Drosophila is insufficient to drive population-level behavioral asymmetries.


Asunto(s)
Conducta Animal , Drosophila melanogaster/fisiología , Genotipo , Conducta Social , Medio Social , Animales , Estudios de Asociación Genética , Fenotipo
16.
Elife ; 92020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32083552

RESUMEN

The pervasive occurrence of sexual dimorphism demonstrates different adaptive strategies of males and females. While different reproductive strategies of the two sexes are well-characterized, very little is known about differential functional requirements of males and females in their natural habitats. Here, we study the impact environmental change on the selection response in both sexes. Exposing replicated Drosophila populations to a novel temperature regime, we demonstrate sex-specific changes in gene expression, metabolic and behavioral phenotypes in less than 100 generations. This indicates not only different functional requirements of both sexes in the new environment but also rapid sex-specific adaptation. Supported by computer simulations we propose that altered sex-biased gene regulation from standing genetic variation, rather than new mutations, is the driver of rapid sex-specific adaptation. Our discovery of environmentally driven divergent functional requirements of males and females has important implications-possibly even for gender aware medical treatments.


Male and female animals of the same species sometimes differ in appearance and sexual behavior, a phenomenon known as sexual dimorphism. Both sexes share most of the same genes, but differences can emerge because of the way these are read by cells to create proteins ­ a process called gene expression. For instance, certain genes can be more expressed in males than in females, and vice-versa. Most studies into the emergence of sexual dimorphism have taken place in stable environments with few changes in climate or other factors. Therefore, the potential impact of environmental changes on sexual dimorphism has been largely overlooked. Here, Hsu et al. used genetic and computational approaches to investigate whether male and female fruit flies adapt differently to a new, hotter environment over several generations. The experiment showed that, after only 100 generations, the way that 60% of all genes were expressed evolved in a different direction in the two sexes. This led to differences in how the males and females made and broke down fat molecules, and in how their neurons operated. These expression changes also translated in differences for high-level biological processes. For instance, animals in the new settings ended up behaving differently, with the males at the end of the experiment spending more time chasing females than the ancestral flies. These findings demonstrate that male and female fruit flies adapt many biological processes (including metabolism and behaviors) differently to cope with changes in their environment, and that many different genes support these sex-specific adaptations. Ultimately, the work by Hsu et al. may inform medical strategies that take into account interactions between the patient's sex and their environment.


Asunto(s)
Adaptación Fisiológica/fisiología , Drosophila melanogaster/fisiología , Adaptación Fisiológica/genética , Animales , Femenino , Regulación de la Expresión Génica/fisiología , Genes/fisiología , Calor , Masculino , Factores Sexuales
17.
Sci Rep ; 9(1): 18767, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822755

RESUMEN

Neonates of different species are born with a set of predispositions that influence their early orienting responses toward the first stimuli encountered in their life. Human neonates and domestic chicks exhibit several similarities in the predisposition for attending to objects that move with speed changes, face-like stimuli and biological motion. Although early predispositions are connected to physiological development, little is known on the temporal course of early predispositions (whether they are stable or change in time) and on the associated genetic variability. To address these issues, we tested the preference for objects that change in speed vs. linear motion in three chicken breeds (Padovana, Polverara and Robusta maculata) within one day after hatching and three days after hatching. We found that the predisposition to preferentially attend to changes in speed is shared by different breeds on the first day of life and that it disappears by day three. These results indicate the existence of a short and transient time window of early predispositions that does not depend on visual experience.


Asunto(s)
Desarrollo Infantil/fisiología , Señales (Psicología) , Percepción de Movimiento/fisiología , Conducta Social , Animales , Pollos , Femenino , Genotipo , Humanos , Recién Nacido , Masculino , Modelos Animales , Factores de Tiempo
18.
Proc Natl Acad Sci U S A ; 116(46): 22918-22920, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659039

RESUMEN

Using appropriate antipredatory responses is crucial for survival. While slowing down reduces the chances of being detected from distant predators, fleeing away is advantageous in front of an approaching predator. Whether appropriate responses depend on experience with moving objects is still an open question. To clarify whether adopting appropriate fleeing or freezing responses requires previous experience, we investigated responses of chicks naive to movement. When exposed to the moving cues mimicking an approaching predator (a rapidly expanding, looming stimulus), chicks displayed a fast escape response. In contrast, when presented with a distal threat (a small stimulus sweeping overhead) they decreased their speed, a maneuver useful to avoid detection. The fast expansion of the stimulus toward the subject, rather than its size per se or change in luminance, triggered the escape response. These results show that young animals, in the absence of previous experience, can use motion cues to select the appropriate responses to different threats. The adaptive needs of young preys are thus matched by spontaneous defensive mechanisms that do not require learning.


Asunto(s)
Pollos/fisiología , Reacción de Fuga , Animales , Conducta Animal , Aprendizaje , Visión Ocular
19.
Anim Cogn ; 22(5): 825-838, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31264123

RESUMEN

Strategies used in artificial grammar learning can shed light into the abilities of different species to extract regularities from the environment. In the A(X)nB rule, A and B items are linked, but assigned to different positional categories and separated by distractor items. Open questions are how widespread is the ability to extract positional regularities from A(X)nB patterns, which strategies are used to encode positional regularities and whether individuals exhibit preferences for absolute or relative position encoding. We used visual arrays to investigate whether cotton-top tamarins (Saguinusoedipus) can learn this rule and which strategies they use. After training on a subset of exemplars, two of the tested monkeys successfully generalized to novel combinations. These tamarins discriminated between categories of tokens with different properties (A, B, X) and detected a positional relationship between non-adjacent items even in the presence of novel distractors. The pattern of errors revealed that successful subjects used visual similarity with training stimuli to solve the task and that successful tamarins extracted the relative position of As and Bs rather than their absolute position, similarly to what has been observed in other species. Relative position encoding appears to be favoured in different tasks and taxa. Generalization, though, was incomplete, since we observed a failure with items that during training had always been presented in reinforced arrays, showing the limitations in grasping the underlying positional rule. These results suggest the use of local strategies in the extraction of positional rules in cotton-top tamarins.


Asunto(s)
Aprendizaje , Refuerzo en Psicología , Saguinus , Animales , Femenino , Masculino , Movimiento
20.
Front Physiol ; 10: 501, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114510

RESUMEN

Early predispositions to preferentially orient toward cues associated with social partners have been documented in several vertebrate species including human neonates and domestic chicks. Human newborns at high familiar risk of Autism Spectrum Disorder (ASD) show differences in their attention toward these predisposed stimuli, suggesting potential impairments in the social-orienting mechanisms in ASD. Using embryonic exposure to valproic acid (VPA) we modeled ASD behavioral deficits in domestic chicks. To investigate social predispositions toward animate motion in domestic chicks, we focused on self-propulsion, using two video-animations representing a simple red circle moving at constant speed (speed-constant) or one that was changing its speed (accelerating and decelerating; speed-change). Using a spontaneous choice test for the two stimuli, we compared spontaneous preferences for stimuli that autonomously change speed between VPA- and vehicle-injected chicks. We found that the preference for speed changes was abolished in VPA-injected chicks compared to vehicle-injected controls. These results add to previous findings indicating similar impairments for static social stimuli and suggest a specific effect of VPA on the development of mechanisms that enhance orienting toward animate stimuli. These findings strengthen the hypothesis of an early impairment of predispositions in the early development of ASD. Hence, early predispositions are a potentially useful tool to detect early ASD symptoms in human neonates and to investigate the molecular and neurobiological mechanisms underlying the onset of this neurodevelopmental disorder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA