Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Fish Biol ; 97(5): 1582-1585, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32880933

RESUMEN

For the first time, an overlooked aspect of partial migration was quantified using otolith microchemistry and brown trout, Salmo trutta, as a model species. Relative contributions of freshwater resident and anadromous female brown trout to mixed-stock sea trout populations in the Baltic Sea were estimated. Out of 236 confirmed wild sea trout sampled around the coast of Estonia 88% were of anadromous maternal origin and 12% were of resident maternal origin. This novel finding underscores the importance of the resident contingent in maintaining the persistence and resilience of the migratory contingent.


Asunto(s)
Migración Animal/fisiología , Microquímica , Membrana Otolítica/química , Trucha/fisiología , Animales , Estonia , Femenino , Agua Dulce
2.
PLoS One ; 14(1): e0208694, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30601857

RESUMEN

The growing grey seal (Halichoerus grypus) population in the Baltic Sea has created conflicts with local fisheries, comparable to similar emerging problems worldwide. Adequate information on the foraging habits is a requirement for responsible management of the seal population. We investigated the applicability of available dietary assessment methods by comparing morphological analysis and DNA metabarcoding of gut contents (short-term diet; n = 129/125 seals, respectively), and tissue chemical markers i.e. fatty acid (FA) profiles of blubber and stable isotopes (SIs) of liver and muscle (mid- or long-term diet; n = 108 seals for the FA and SI markers). The methods provided complementary information. Short-term methods indicated prey species and revealed dietary differences between age groups and areas but for limited time period. In the central Baltic, herring was the main prey, while in the Gulf of Finland percid and cyprinid species together comprised the largest part of the diet. Perch was also an important prey in the western Baltic Proper. The DNA analysis provided firm identification of many prey species, which were neglected or identified only at species group level by morphological analysis. Liver SIs distinguished spatial foraging patterns and identified potentially migrated individuals, whereas blubber FAs distinguished individuals frequently utilizing certain types of prey. Tissue chemical markers of adult males suggested specialized feeding to certain areas and prey, which suggest that these individuals are especially prone to cause economic losses for fisheries. We recommend combined analyses of gut contents and tissue chemical markers as dietary monitoring methodology of aquatic top predators to support an optimal ecosystem-based management.


Asunto(s)
Ecosistema , Phocidae/genética , Animales , Países Bálticos , Ácidos Grasos/análisis , Explotaciones Pesqueras , Phocidae/clasificación
3.
PLoS One ; 9(11): e113836, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25423168

RESUMEN

Baltic seals are recovering after a population decline. The increasing seal stocks cause notable damage to fisheries in the Baltic Sea, with an unknown number of seals drowning in fishing gear every year. Thus, sustainable seal management requires updated knowledge of the by-catch of seals--the number of specimens that die in fishing gear. We analyse the by-catch of grey seals (Halichoerus grypus) in Finland, Sweden, and Estonia in 2012. We collect data with interviews (35 in Finland, 54 in Sweden, and 72 in Estonia) and analyse them with a hierarchical Bayesian model. The model accounts for variability in seal abundance, seal mortality and fishing effort in different sub-areas of the Baltic Sea and allows us to predict the by-catch in areas where interview data was not available. We provide a detailed description of the survey design and interview methods, and discuss different factors affecting fishermen's motivation to report by-catch and how this may affect the results. Our analysis shows that the total yearly by-catch by trap and gill nets in Finland, Sweden and Estonia is, with 90% probability, more than 1240 but less than 2860; and the posterior median and mean of the total by-catch are 1550 and 1880 seals, respectively. Trap nets make about 88% of the total by-catch. However, results also indicate that in one of the sub-areas of this study, fishermen may have underreported their by-catch. Taking the possible underreporting into account the posterior mean of the total by-catch is between 2180 and 2380. The by-catch in our study area is likely to represent at least 90% of the total yearly grey seal by-catch in the Baltic Sea.


Asunto(s)
Explotaciones Pesqueras , Phocidae , Animales , Países Bálticos , Entrevistas como Asunto , Océanos y Mares
4.
Ecotoxicol Environ Saf ; 79: 1-12, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22364842

RESUMEN

Investigating how individuals are affected by environmental pollution is relatively straightforward, for example through conducting field studies or laboratory toxicity tests. Exploring such effects at a population level is considerably more difficult. Nonetheless, the exploration of population-level effects is important as the outcomes may differ from those seen at the individual level. Eelpout (Zoarces viviparus L.) have been used for several years as a bioindicator for hazard substances in both the field and laboratory tests, and individual effects on reproduction have been reported. However, the influence of these effects at the population level remained unexplored. In this study, four Leslie matrix models were parameterized using data from non-polluted eelpout populations (Skagerrak, Baltic Proper, Gulf of Bothnia and Gulf of Finland). The four sites represent an environmental gradient in salinity. Furthermore, life-history data revealed differences between the sites with growth rate, fecundity, age at maturity and longevity being the most significant. The effect of pollution on natural eelpout populations was then simulated by combining the outputs from the Leslie matrices with data from laboratory and field studies exploring reproductive impairment in contaminated environments. Our results show that despite differences in life-history characteristics between sites, survival of early life stages (i.e. larvae and zero-year-old fish) was the most important factor affecting population growth and persistence for all sites. The range of change in survival of larvae necessary to change population dynamics (i.e. growth) and persistence is well within the range documented in recipient and experimental studies of chemicals and industrial waste waters. Overall, larval malformation resulting from environmental pollution can have large effects on natural populations, leading to population losses and possibly even extinction. This study hereby contributes valuable knowledge by extending individual-level effects of environmental contaminants to the population level.


Asunto(s)
Perciformes/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad , Animales , Finlandia , Residuos Industriales , Estadios del Ciclo de Vida , Modelos Teóricos , Crecimiento Demográfico , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos
5.
Environ Res ; 111(7): 933-42, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21440890

RESUMEN

Alien species contribute to global change in all marine ecosystems. Environmental variability can affect species distribution and population sizes, and is therefore expected to influence alien species. In this study, we have investigated temporal variability of 11 alien species representing different trophic levels and ecological functions in two gulfs of the brackish Baltic Sea in relation to environmental change. Independent of the invasion time, organism group or the life-history stage, abundance and/or biomass of the investigated alien species was either stable or displayed abrupt increases over time. Timing in population shifts was species-specific and exhibited no generic patterns, indicating that the observed large shifts in environmental parameters have no uniform consequences to the alien biota. In general, the inter-annual dynamics of alien and native species was not largely different, though native species tended to exhibit more diverse variability patterns compared to the alien species. There were no key environmental factors that affected most of the alien species, instead, the effects varied among the studied gulfs and species. Non-indigenous species have caused prominent structural changes in invaded communities as a result of exponential increase in the most recent invasions, as well as increased densities of the already established alien species.


Asunto(s)
Ecosistema , Peces , Especies Introducidas , Agua de Mar , Zooplancton , Animales , Biodiversidad , Biomasa , Océanos y Mares , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA