Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Nat Prod ; 87(6): 1628-1634, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38869194

RESUMEN

The unfolded protein response (UPR) is a key component of fungal virulence. The prenylated xanthone γ-mangostin isolated from Garcinia mangostana (Clusiaceae) fruit pericarp, has recently been described to inhibit this fungal adaptative pathway. Considering that Calophyllum caledonicum (Calophyllaceae) is known for its high prenylated xanthone content, its stem bark extract was fractionated using a bioassay-guided procedure based on the cell-based anti-UPR assay. Four previously undescribed xanthone derivatives were isolated, caledonixanthones N-Q (3, 4, 8, and 12), among which compounds 3 and 8 showed promising anti-UPR activities with IC50 values of 11.7 ± 0.9 and 7.9 ± 0.3 µM, respectively.


Asunto(s)
Calophyllum , Respuesta de Proteína Desplegada , Xantonas , Xantonas/farmacología , Xantonas/química , Xantonas/aislamiento & purificación , Respuesta de Proteína Desplegada/efectos de los fármacos , Calophyllum/química , Estructura Molecular , Humanos , Corteza de la Planta/química
2.
J Agric Food Chem ; 71(37): 13706-13716, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37697453

RESUMEN

Discovering new solutions for crop protection is a major challenge for the next decades as a result of the ecotoxicological impact of classical fungicides, the emergence of fungicide resistances, and the consequence of climate change on pathogen distribution. Previous work on fungal mutants deficient in the unfolded protein response (UPR) supported that targeting this pathway is a promising plant disease control strategy. In particular, we showed that the UPR is involved in fungal virulence by altering cell protection against host defense compounds, such as phytoalexins and phytoanticipins. In this study, we evaluated natural products targeting fungal IRE1 protein (UPR effector) and consequently increasing fungal susceptibility to plant defenses. Developing an in vitro cell-based screening assay allowed for the identification of seven potential IRE1 inhibitors with a focus on polyhydroxylated prenylated xanthones. Inhibition of hac1 mRNA splicing, which is mediated by IRE1, was then validated for the most active compound, namely, γ-mangostin 3. To study the mode of interaction between the binding site of IRE1 and active xanthones, molecular docking was also undertaken, revealing similar and novel interactions between the known inhibitor and the binding site. Eventually, active xanthones applied at subtoxic doses induced a significant reduction in necrosis size for leaves of Brassica oleracea inoculated with Alternaria brassicicola and Botrytis cinerea.


Asunto(s)
Productos Biológicos , Fungicidas Industriales , Protección de Cultivos , Simulación del Acoplamiento Molecular , Sitios de Unión , Proteínas Fúngicas/genética , Fungicidas Industriales/farmacología , Proteínas Serina-Treonina Quinasas
3.
Metabolites ; 12(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35208174

RESUMEN

Naturally occurring substances are valuable resources for drug development. In this respect, chalcones are known to be antiproliferative agents against prostate cancer cell lines through various mechanisms or targets. Based on the literature and preliminary results, we aimed to study and optimise the efficiency of a series of chalcones to inhibit androgen-converting AKR1C3, known to promote prostate cancer. A total of 12 chalcones with different substitution patterns were synthesised. Structure-activity relationships associated with these modifications on AKR1C3 inhibition were analysed by performing enzymatic assays and docking simulations. In addition, the selectivity and cytotoxicity of the compounds were assessed. In enzymatic assays, C-6' hydroxylated derivatives were more active than C-6' methoxylated derivatives. In contrast, C-4 methylation increased activity over C-4 hydroxylation. Docking results supported these findings with the most active compounds fitting nicely in the binding site and exhibiting strong interactions with key amino acid residues. The most effective inhibitors were not cytotoxic for HEK293T cells and selective for 17ß-hydroxysteroid dehydrogenases not primarily involved in steroid hormone metabolism. Nevertheless, they inhibited several enzymes of the steroid metabolism pathways. Favourable substitutions that enhanced AKR1C3 inhibition of chalcones were identified. This study paves the way to further develop compounds from this series or related flavonoids with improved inhibitory activity against AKR1C3.

4.
Biochem Pharmacol ; 195: 114825, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34762841

RESUMEN

Specialized pro-resolving mediators (SPMs) comprise lipid mediators (LMs) produced from polyunsaturated fatty acids (PUFAs) via stereoselective oxygenation particularly involving 12/15-lipoxygenases (LOXs). In contrast to pro-inflammatory LMs such as leukotrienes formed by 5-LOX and prostaglandins formed by cyclooxygenases, the SPMs have anti-inflammatory and inflammation-resolving properties. Although glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs) that block prostaglandin production are still prime therapeutics for inflammation-related diseases despite severe side effects, novel concepts focus on SPMs as immunoresolvents for anti-inflammatory pharmacotherapy. Here, we studied the natural chalcone MF-14 and the corresponding dihydrochalcone MF-15 from Melodorum fruticosum, for modulating the biosynthesis of LM including leukotrienes, prostaglandins, SPM and their 12/15-LOX-derived precursors in human monocyte-derived macrophage (MDM) M1- and M2-like phenotypes. In MDM challenged with Staphylococcus aureus-derived exotoxins both compounds (10 µM) significantly suppressed 5-LOX product formation but increased the biosynthesis of 12/15-LOX products, especially in M2-MDM. Intriguingly, in resting M2-MDM, MF-14 and MF-15 strikingly evoked generation of 12/15-LOX products and of SPMs from liberated PUFAs, along with translocation of 15-LOX-1 to membranous compartments. Enhanced 12/15-LOX product formation by the chalcones was evident also when exogenous PUFAs were supplied, excluding increased substrate supply as sole underlying mechanism. Rather, MF-14 and MF-15 stimulate the activity of 15-LOX-1, supported by experiments with HEK293 cells transfected with either 5-LOX, 15-LOX-1 or 15-LOX-2. Together, the natural chalcone MF-14 and the dihydrochalcone MF-15 favorably modulate LM biosynthesis in human macrophages by suppressing pro-inflammatory leukotrienes but stimulating formation of SPMs by differential interference with 5-LOX and 15-LOX-1.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Chalcona/farmacología , Leucotrienos/metabolismo , Macrófagos/efectos de los fármacos , Prostaglandinas/metabolismo , Adulto , Annonaceae/química , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chalcona/química , Chalconas/química , Chalconas/farmacología , Células HEK293 , Humanos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/clasificación , Macrófagos/metabolismo , Estructura Molecular , Extractos Vegetales/farmacología
5.
J Med Chem ; 64(15): 11496-11526, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34279935

RESUMEN

Endogenous long-chain metabolites of vitamin E (LCMs) mediate immune functions by targeting 5-lipoxygenase (5-LOX) and increasing the systemic concentrations of resolvin E3, a specialized proresolving lipid mediator. SAR studies on semisynthesized analogues highlight α-amplexichromanol (27a), which allosterically inhibits 5-LOX, being considerably more potent than endogenous LCMs in human primary immune cells and blood. Other enzymes within lipid mediator biosynthesis were not substantially inhibited, except for microsomal prostaglandin E2 synthase-1. Compound 27a is metabolized by sulfation and ß-oxidation in human liver-on-chips and exhibits superior metabolic stability in mice over LCMs. Pharmacokinetic studies show distribution of 27a from plasma to the inflamed peritoneal cavity and lung. In parallel, 5-LOX-derived leukotriene levels decrease, and the inflammatory reaction is suppressed in reconstructed human epidermis, murine peritonitis, and experimental asthma in mice. Our study highlights 27a as an orally active, LCM-inspired drug candidate that limits inflammation with superior potency and metabolic stability to the endogenous lead.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Descubrimiento de Drogas , Inflamación/tratamiento farmacológico , Inhibidores de la Lipooxigenasa/farmacología , Vitamina E/farmacología , Administración Oral , Araquidonato 5-Lipooxigenasa/genética , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/metabolismo , Inhibidores de la Lipooxigenasa/administración & dosificación , Inhibidores de la Lipooxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Vitamina E/administración & dosificación , Vitamina E/metabolismo
6.
Chemistry ; 27(17): 5498-5508, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33443311

RESUMEN

A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol-protein interactions.


Asunto(s)
Polifenoles , Resonancia por Plasmón de Superficie , Flavonoides , Humanos , Ligandos , Estreptavidina
7.
ChemMedChem ; 16(5): 881-890, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33219748

RESUMEN

New 5-substituted vitamin E derivatives were semisynthesized, and their antibacterial activity against human Gram-positive and Gram-negative pathogens was evaluated. Several vitamin E analogues were active against methicillin-resistant Staphylococcus aureus (MRSA) and/or methicillin-resistant Staphylococcus epidermidis (MRSE); structure-activity relationships (SARs) are discussed. As a result, it is shown that the presence of a carboxylic acid function at the C-5 position and/or at the end of the side chain is crucial for the antibacterial activity. The bactericidal or bacteriostatic action of three compounds against MRSA and MRSE was confirmed in a time-kill kinetics study, and the cytotoxicity on human cells was evaluated. The preliminary mechanism study by confocal microscopy indicated that those vitamin E analogues led to bacterial cell death through membrane disruption.


Asunto(s)
Antibacterianos/farmacología , Resistencia a la Meticilina/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Vitamina E/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Vitamina E/análogos & derivados , Vitamina E/química
8.
Eur J Med Chem ; 202: 112518, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32668380

RESUMEN

Inflammation contributes to the development of various pathologies, e.g. asthma, cardiovascular diseases, some types of cancer, and metabolic disorders. Leukotrienes (LT), biosynthesized from arachidonic acid by 5-lipoxygenase (5-LO), constitute a potent family of pro-inflammatory lipid mediators. δ-Garcinoic acid (δ-GA) (1), a natural vitamin E analogue, was chosen for further structural optimization as it selectively inhibited 5-LO activity in cell-free and cell-based assays without impairing the production of specialized pro-resolving mediators by 15-LO. A model of semi-quantitative prediction of 5-LO inhibitory potential developed during the current study allowed the design of 24 garcinamides that were semi-synthesized. In accordance with the prediction model, biological evaluations showed that eight compounds potently inhibited human recombinant 5-LO (IC50 < 100 nM). Interestingly, four compounds were substantially more potent than 1 in activated primary human neutrophils assays. Structure - activity relationships shed light on a supplementary hydrophobic pocket in the allosteric binding site that could be fitted with an aromatic ring.


Asunto(s)
Amidas/farmacología , Antiinflamatorios no Esteroideos/farmacología , Araquidonato 5-Lipooxigenasa/metabolismo , Diseño de Fármacos , Inhibidores de la Lipooxigenasa/farmacología , Vitamina E/análogos & derivados , Amidas/síntesis química , Amidas/química , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Relación Dosis-Respuesta a Droga , Humanos , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Vitamina E/síntesis química , Vitamina E/química , Vitamina E/farmacología
9.
Anal Chem ; 92(13): 8793-8801, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32479074

RESUMEN

Whether chemists or biologists, researchers dealing with metabolomics require tools to decipher complex mixtures. As a part of metabolomics and initially dedicated to identifying bioactive natural products, dereplication aims at reducing the usual time-consuming process of known compounds isolation. Mass spectrometry and nuclear magnetic resonance are the most commonly reported analytical tools during dereplication analysis. Though it has low sensitivity, 13C NMR has many advantages for such a study. Notably, it is nonspecific allowing simultaneous high-resolution analysis of any organic compounds including stereoisomers. Since NMR spectrometers nowadays provide useful data sets in a reasonable time frame, we have embarked upon writing software dedicated to 13C NMR dereplication. The present study describes the development of a freely distributed algorithm, namely MixONat and its ability to help researchers decipher complex mixtures. Based on Python 3.5, MixONat analyses a {1H}-13C NMR spectrum optionally combined with DEPT-135 and 90 data-to distinguish carbon types (i.e., CH3, CH2, CH, and C)-as well as a MW filtering. The software requires predicted or experimental carbon chemical shifts (δc) databases and displays results that can be refined based on user interactions. As a proof of concept, this 13C NMR dereplication strategy was evaluated on mixtures of increasing complexity and exhibiting pharmaceutical (poppy alkaloids), nutritional (rosemary extracts) or cosmetics (mangosteen peel extract) applications. Associated results were compared with other methods commonly used for dereplication. MixONat gave coherent results that rapidly oriented the user toward the correct structural types of secondary metabolites, allowing the user to distinguish between structurally close natural products, including stereoisomers.


Asunto(s)
Productos Biológicos/química , Espectroscopía de Resonancia Magnética/métodos , Programas Informáticos , Algoritmos , Alcaloides/química , Isótopos de Carbono/química , Bases de Datos de Compuestos Químicos , Garcinia mangostana/química , Garcinia mangostana/metabolismo , Papaver/química , Papaver/metabolismo , Extractos Vegetales/química , Rosmarinus/química , Rosmarinus/metabolismo
10.
J Nat Prod ; 82(1): 51-58, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30629440

RESUMEN

Recent studies have highlighted the biological potential of tocotrienols, a vitamin E subfamily. The major natural sources of tocotrienols are complex mixtures requiring particularly challenging purification processes. The present study describes efficient semi-synthetic strategies toward relevant δ-( R)-tocotrienol derivatives, using as a starting material δ-( R)-garcinoic acid, the major vitamin E derivative isolated from Garcinia kola nuts, a renewable vegetal source.


Asunto(s)
Garcinia/metabolismo , Tocotrienoles/metabolismo , Tocotrienoles/aislamiento & purificación
11.
Nat Commun ; 9(1): 3834, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237488

RESUMEN

Systemic vitamin E metabolites have been proposed as signaling molecules, but their physiological role is unknown. Here we show, by library screening of potential human vitamin E metabolites, that long-chain ω-carboxylates are potent allosteric inhibitors of 5-lipoxygenase, a key enzyme in the biosynthesis of chemoattractant and vasoactive leukotrienes. 13-((2R)-6-hydroxy-2,5,7,8-tetramethylchroman-2-yl)-2,6,10-trimethyltridecanoic acid (α-T-13'-COOH) can be synthesized from α-tocopherol in a human liver-on-chip, and is detected in human and mouse plasma at concentrations (8-49 nM) that inhibit 5-lipoxygenase in human leukocytes. α-T-13'-COOH accumulates in immune cells and inflamed murine exudates, selectively inhibits the biosynthesis of 5-lipoxygenase-derived lipid mediators in vitro and in vivo, and efficiently suppresses inflammation and bronchial hyper-reactivity in mouse models of peritonitis and asthma. Together, our data suggest that the immune regulatory and anti-inflammatory functions of α-tocopherol depend on its endogenous metabolite α-T-13'-COOH, potentially through inhibiting 5-lipoxygenase in immune cells.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Inflamación/patología , Vitamina E/metabolismo , Adolescente , Adulto , Anciano , Animales , Araquidonato 5-Lipooxigenasa/química , Hiperreactividad Bronquial/patología , Supervivencia Celular/efectos de los fármacos , Sistema Libre de Células , Humanos , Concentración 50 Inhibidora , Leucocitos/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Metaboloma , Ratones , Persona de Mediana Edad , Peritonitis/patología , Proteínas Recombinantes/metabolismo , Vitamina E/química , Adulto Joven
12.
J Nat Prod ; 81(8): 1850-1859, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30024167

RESUMEN

Phytochemical investigation of the root extracts of Hypericum perforatum led to the isolation of two biphenyl derivatives named hyperbiphenyls A and B (1 and 2) and four known xanthones (3-6). These structures were elucidated by spectroscopic and spectrometric methods including UV, NMR, and HRMS. The absolute configuration of the biphenyl derivatives was defined by two different approaches: biomimetic total synthesis of racemic hyperbiphenyl A followed by 1H and 19F NMR Mosher's esters analysis and stereoselective total synthesis of hyperbiphenyl B, permitting assignment of the S absolute configuration for both compounds. The bioactivity of compounds 1-6 toward a set of biomolecules, including major histocompatibility complex (MHC) molecules expressed on vascular endothelial cells, was measured. The results showed that the major xanthone, i.e., 5- O-methyl-2-deprenylrheediaxanthone B (3), is a potent inhibitor of MHC that efficiently reduces HLA-E, MHC-II, and MICA biomolecules on cell surfaces.


Asunto(s)
Benzofuranos/química , Benzofuranos/farmacología , Benzopiranos/química , Benzopiranos/farmacología , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Hypericum/química , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Raíces de Plantas/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Factores Inmunológicos/síntesis química , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta , Estereoisomerismo
13.
Br J Pharmacol ; 174(14): 2409-2421, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28493341

RESUMEN

BACKGROUND AND PURPOSE: The paradigm that GPCRs are able to prolong or initiate cellular signalling through intracellular receptors recently emerged. Melatonin binds to G protein-coupled MT1 and MT2 receptors. In contrast to most other hormones targeting GPCRs, melatonin and its synthetic analogues are amphiphilic molecules easily penetrating into cells, but the existence of intracellular receptors is still unclear mainly due to a lack of appropriate tools. EXPERIMENTAL APPROACH: We therefore designed and synthesized a series of hydrophilic melatonin receptor ligands coupled to the Cy3 cyanin fluorophore to reliably monitor its inability to penetrate cells. Two compounds, one lipophilic and one hydrophilic, were then functionally characterized in terms of their affinity for human and murine melatonin receptors expressed in HEK293 cells and their signalling efficacy. KEY RESULTS: Among the different ligands, ICOA-13 showed the desired properties as it was cell-impermeant and bound to human and mouse MT1 and MT2 receptors. ICOA-13 showed differential activities on melatonin receptors ranging from partial to full agonistic properties for the Gi /cAMP and ERK pathway and ß-arrestin 2 recruitment. Notably, ICOA-13 enabled us to discriminate between Gi /cAMP signalling of the MT1 receptor initiated at the cell surface and neuronal mitochondria. CONCLUSIONS AND IMPLICATIONS: We report here the first cell-impermeant melatonin receptor agonist, ICOA-13, which allows us to discriminate between signalling events initiated at the cell surface and intracellular compartments. Detection of mitochondrial MT1 receptors may have an important impact on the development of novel melatonin receptor ligands relevant for neurodegenerative diseases, such as Huntington disease.


Asunto(s)
Diseño de Fármacos , Etilaminas/síntesis química , Etilaminas/farmacología , Indoles/síntesis química , Indoles/farmacología , Ligandos , Pirroles/síntesis química , Pirroles/farmacología , Receptores de Melatonina/agonistas , Animales , Carbocianinas/análisis , Carbocianinas/química , Permeabilidad de la Membrana Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Etilaminas/química , Células HEK293 , Humanos , Indoles/química , Ratones , Estructura Molecular , Pirroles/química , Receptores de Melatonina/metabolismo , Relación Estructura-Actividad
14.
Planta Med ; 82(11-12): 1110-6, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27286327

RESUMEN

Over the last twenty years, tocotrienol analogues raised great interest because of their higher level and larger domain of biological activities when compared with tocopherols. Amongst the most promising therapeutic application, anti-inflammatory potency has been evaluated through the inhibition of various mediators of inflammation. Here, we worked on the isolation of two natural isoforms of garcinoic acid (i.e., δ and γ) from two different sources, respectively, Garcinia kola seeds and Garcinia amplexicaulis bark. We also developed semisynthetic strategies to access the other two non-natural α- and ß-garcinoic acid isoforms. In the next stage of our work, microsomal prostaglandin E2 synthase was defined as a target to evaluate the anti-inflammatory potential of the four garcinoic acid isomers. Both dimethylated isoforms, ß- and γ-garcinoic acid, exhibited the lowest IC50, 2.8 µM and 2.0 µM, respectively. These results showed that the affinity of tocotrienol analogues to microsomal prostaglandin E2 synthase-1 most probably contributes to the anti-inflammatory potential of this class of derivatives.


Asunto(s)
Benzopiranos/aislamiento & purificación , Garcinia/química , Extractos Vegetales/aislamiento & purificación , Prostaglandina-E Sintasas/antagonistas & inhibidores , Benzopiranos/síntesis química , Benzopiranos/química , Línea Celular , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Humanos , Isomerismo , Corteza de la Planta/química , Extractos Vegetales/farmacología
15.
Org Biomol Chem ; 11(16): 2693-705, 2013 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-23474872

RESUMEN

The synthesis and applications of the first water-soluble benzene derivative bearing a set of three different and orthogonal bioconjugatable groups (aminooxy, azido and thiol) are described. The combined use of a 5-amino isophthalic acid scaffold and unusual acid-labile protecting groups for temporarily masking aminooxy and thiol moieties has enabled the development of a highly convergent approach towards the synthesis of such a trivalent bioconjugation platform in good yields. The potential utility of this "ready-to-use" cross-linking reagent for creating complex and fragile tri-component (bio)molecular systems was illustrated through (1) the rapid preparation of a three-colour FRET cascade with valuable spectral properties and (2) the luminescent/fluorescent labelling of peptides and peptide-oligonucleotide conjugates. Thus, such (bio)molecular assemblies were readily obtained via a three-step process or in a "one-pot" manner, both involving oxime ligation, thiol-alkylation (S(N)2 or Michael addition) and copper-catalysed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reactions.


Asunto(s)
Derivados del Benceno/síntesis química , Reactivos de Enlaces Cruzados/síntesis química , Sustancias Luminiscentes/síntesis química , Azidas/síntesis química , Azidas/química , Derivados del Benceno/química , Reactivos de Enlaces Cruzados/química , Transferencia Resonante de Energía de Fluorescencia , Sustancias Luminiscentes/química , Oligonucleótidos/síntesis química , Oligonucleótidos/química , Péptidos/síntesis química , Péptidos/química , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química
16.
Med Chem ; 9(8): 1028-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23373598

RESUMEN

Embelin is a natural product, inhibitor of XIAP (X-chromosome-linked Inhibitor of APoptosis) with strong proapoptotic properties on cancer cells. In order to clarify the role of two OH groups on benzoquinone core, we have prepared by hemisynthesis close analogs of embelin, where these OH groups have been replaced in a systematic manner by OMe and OAc groups. Proapoptotic activities of six embelin derivatives have been studied as single agent, or in combination with TRAIL, and their abilities to interact with XIAP have been evaluated by Surface Plasmon Biacore. Our results show that these new embelin analogs have good proapoptotic properties against selected cancer cells, often higher than the natural product itself. Further, this activity is not directly mediated by XIAP. Altogether these preliminary results demonstrate that for active embelin analogs, the two OH groups are not absolutely required for anticancer activity, opening new possibilities for the design of proapoptotic derivatives in these series.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzoquinonas/síntesis química , Benzoquinonas/farmacología , Antineoplásicos/síntesis química , Benzoquinonas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA