Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Viruses ; 16(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39339898

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) is gradually replacing Sanger sequencing for HIV genotypic drug resistance testing (GRT). This work evaluated the concordance among different NGS-GRT interpretation tools in a real-life setting. METHODS: Routine NGS-GRT data were generated from viral RNA at 11 Italian laboratories with the AD4SEQ HIV-1 Solution v2 commercial kit. NGS results were interpreted by the SmartVir system provided by the kit and by two online tools (HyDRA Web and Stanford HIVdb). NGS-GRT was considered valid when the coverage was >100 reads (100×) at each PR/RT/IN resistance-associated position listed in the HIVdb 9.5.1 algorithm. RESULTS: Among 629 NGS-GRT, 75.2%, 74.2%, and 70.9% were valid according to SmartVir, HyDRA Web, and HIVdb. Considering at least two interpretation tools, 463 (73.6%) NGS-GRT had a valid coverage for resistance analyses. The proportion of valid samples was affected by viremia <10,000-1000 copies/mL and non-B subtypes. Mutations at an NGS frequency >10% showed fair concordance among different interpretation tools. CONCLUSION: This Italian survey on NGS resistance testing suggests that viremia levels and HIV subtype affect NGS-GRT coverage. Within the current routine method for NGS-GRT, only mutations with frequency >10% seem reliably detected across different interpretation tools.


Asunto(s)
Farmacorresistencia Viral , Infecciones por VIH , VIH-1 , Secuenciación de Nucleótidos de Alto Rendimiento , VIH-1/genética , VIH-1/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Italia , Farmacorresistencia Viral/genética , Infecciones por VIH/virología , Mutación , Genotipo , ARN Viral/genética , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico
2.
Viruses ; 16(9)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39339940

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) kits are needed to finalise the transition from Sanger sequencing to NGS in HIV-1 genotypic drug resistance testing. MATERIALS AND METHODS: We compared a homemade NGS amplicon-based protocol and the AD4SEQ HIV-1 Solution v2 (AD4SEQ) NGS kit from Arrow Diagnostics for identifying resistance-associated mutations (RAMs) above the 5% threshold in 28 plasma samples where Sanger sequencing previously detected at least one RAM. RESULTS: The samples had a median 4.8 log [IQR 4.4-5.2] HIV-1 RNA copies/mL and were mostly subtype B (61%) and CRF02_AG (14%). Homemade NGS had a lower rate of samples with low-coverage regions (2/28) compared with AD4SEQ (13/28) (p < 0.001). Homemade NGS and AD4SEQ identified additional mutations with respect to Sanger sequencing in 13/28 and 9/28 samples, respectively. However, there were two and eight cases where mutations detected by Sanger sequencing were missed by homemade NGS and AD4SEQ-SmartVir, respectively. The discrepancies between NGS and Sanger sequencing resulted in a few minor differences in drug susceptibility interpretation, mostly for NNRTIs. CONCLUSIONS: Both the NGS systems identified additional mutations with respect to Sanger sequencing, and the agreement between them was fair. However, AD4SEQ should benefit from technical adjustments allowing higher sequence coverage.


Asunto(s)
Farmacorresistencia Viral , Infecciones por VIH , VIH-1 , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , VIH-1/genética , VIH-1/efectos de los fármacos , Farmacorresistencia Viral/genética , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Infecciones por VIH/virología , Infecciones por VIH/tratamiento farmacológico , Masculino , Femenino , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Genotipo , Adulto , Persona de Mediana Edad , ARN Viral/genética
3.
Eur J Med Chem ; 277: 116737, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39153334

RESUMEN

Influenza viruses (IV) are single-stranded RNA viruses with a negative-sense genome and have the potential to cause pandemics. While vaccines exist for influenza, their protection is only partial. Additionally, there is only a limited number of approved anti-IV drugs, which are associated to emergence of drug resistance. To address these issues, for years we have focused on the development of small-molecules that can interfere with the heterodimerization of PA and PB1 subunits of the IV RNA-dependent RNA polymerase (RdRP). In this study, starting from a cycloheptathiophene-3-carboxamide compound that we recently identified, we performed iterative cycles of medicinal chemistry optimization that led to the identification of compounds 43 and 45 with activity in the nanomolar range against circulating A and B strains of IV. Mechanistic studies demonstrated the ability of 43 and 45 to interfere with viral RdRP activity by disrupting PA-PB1 subunits heterodimerization and to bind to the PA C-terminal domain through biophysical assays. Most important, ADME studies of 45 also showed an improvement in the pharmacokinetic profile with respect to the starting hit.


Asunto(s)
Antivirales , ARN Polimerasa Dependiente del ARN , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Humanos , Animales , Relación Estructura-Actividad , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , Proteínas Virales/química , Estructura Molecular , Multimerización de Proteína/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/enzimología , Pruebas de Sensibilidad Microbiana , Perros
4.
J Prev Med Hyg ; 65(1): E11-E16, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38706768

RESUMEN

Introduction: The 2021/2022 influenza season was not characterised by a well-defined incidence peak. As reported by the Italian National Institute of Health, a high value of incidence of influenza cases was recorded in week 13, but it was still lower than in other influenza seasons. This abnormal circulation was probably due to relaxation of the COVID-19 pandemic restriction measures, such as social distancing, smart-working, home leaning and the use of masks, which greatly reduced the circulation of respiratory-transmitted viruses, including human respiratory syncytial virus (HRSV). The symptoms of SARS-CoV-2 and influenza are quite similar, sharing the human-to-human transmission route via respiratory droplets. Methods: The aim of this study was to estimate the rate of coinfection with influenza viruses and/or HRSV in SARS-CoV-2-positive subjects (N = 940) in a population of central Italy during the 2021/2022 season. Results: A total of 54 cases of coinfection were detected during the study period, 51 cases (5.4%) of SARS-CoV-2 and influenza virus and three cases (0.3%) of SARS-CoV-2 and HRSV coinfection. Conclusions: These results highlight the importance of continuous monitoring of the circulation of influenza virus and other respiratory viruses in the context of the COVID-19 pandemic.


Asunto(s)
COVID-19 , Coinfección , Gripe Humana , SARS-CoV-2 , Humanos , Italia/epidemiología , COVID-19/epidemiología , Gripe Humana/epidemiología , Coinfección/epidemiología , Femenino , Adulto , Masculino , Niño , Persona de Mediana Edad , Preescolar , Adolescente , Anciano , Estaciones del Año , Lactante , Adulto Joven , Incidencia , Infecciones por Virus Sincitial Respiratorio/epidemiología
5.
Bioinformatics ; 40(6)2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38775719

RESUMEN

MOTIVATION: In predicting HIV therapy outcomes, a critical clinical question is whether using historical information can enhance predictive capabilities compared with current or latest available data analysis. This study analyses whether historical knowledge, which includes viral mutations detected in all genotypic tests before therapy, their temporal occurrence, and concomitant viral load measurements, can bring improvements. We introduce a method to weigh mutations, considering the previously enumerated factors and the reference mutation-drug Stanford resistance tables. We compare a model encompassing history (H) with one not using this information (NH). RESULTS: The H-model demonstrates superior discriminative ability, with a higher ROC-AUC score (76.34%) than the NH-model (74.98%). Wilcoxon test results confirm significant improvement of predictive accuracy for treatment outcomes through incorporating historical information. The increased performance of the H-model might be attributed to its consideration of latent HIV reservoirs, probably obtained when leveraging historical information. The findings emphasize the importance of temporal dynamics in acquiring mutations. However, our result also shows that prediction accuracy remains relatively high even when no historical information is available. AVAILABILITY AND IMPLEMENTATION: This analysis was conducted using the Euresist Integrated DataBase (EIDB). For further validation, we encourage reproducing this study with the latest release of the EIDB, which can be accessed upon request through the Euresist Network.


Asunto(s)
Infecciones por VIH , VIH-1 , Mutación , VIH-1/genética , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Farmacorresistencia Viral/genética , Carga Viral , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/farmacología , Resultado del Tratamiento
6.
Molecules ; 29(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38611732

RESUMEN

The use of privileged scaffolds as a starting point for the construction of libraries of bioactive compounds is a widely used strategy in drug discovery and development. Scaffold decoration, morphing and hopping are additional techniques that enable the modification of the chosen privileged framework and better explore the chemical space around it. In this study, two series of highly functionalized pyrimidine and pyridine derivatives were synthesized using a scaffold morphing approach consisting of triazine compounds obtained previously as antiviral agents. Newly synthesized azines were evaluated against lymphoma, hepatocarcinoma, and colon epithelial carcinoma cells, showing in five cases acceptable to good anticancer activity associated with low cytotoxicity on healthy fibroblasts. Finally, ADME in vitro studies were conducted on the best derivatives of the two series showing good passive permeability and resistance to metabolic degradation.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antineoplásicos/farmacología , Antivirales/farmacología , Compuestos Azo
7.
Viruses ; 16(2)2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38399944

RESUMEN

Combination antiviral therapy may be helpful in the treatment of SARS-CoV-2 infection; however, no clinical trial data are available, and combined use of direct-acting antivirals (DAA) and monoclonal antibodies (mAb) has been reported only anecdotally. To assess the cooperative effects of dual drug combinations in vitro, we used a VERO E6 cell-based in vitro system with the ancestral B.1 or the highly divergent BQ.1.1 virus to test pairwise combinations of the licensed DAA, including nirmatrelvir (NRM), remdesivir (RDV) and the active metabolite of molnupiravir (EIDD-1931) as well the combination of RDV with four licensed mAbs (sotrovimab, bebtelovimab, cilgavimab, tixagevimab; tested only with the susceptible B.1 virus). According to SynergyFinder 3.0 summary and weighted scores, all the combinations had an additive effect. Within DAA/DAA combinations, paired scores with the B.1 and BQ.1.1 variants were comparable. In the post hoc analysis weighting synergy by concentrations, several cases of highly synergistic scores were detected at specific drug concentrations, both for DAA/DAA and for RDV/mAb combinations. This was supported by in vitro confirmation experiments showing a more than a linear shift of a drug-effective concentration (IC50) at increasing concentrations of the companion drug, although the effect was prominent with DAA/DAA combinations and minimal or null with RDV/mAb combinations. These results support the cooperative effects of dual drug combinations in vitro, which should be further investigated in animal models before introduction into the clinic.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Animales , SARS-CoV-2/genética , Antivirales/farmacología , Anticuerpos Monoclonales/farmacología , Combinación de Medicamentos
8.
Org Biomol Chem ; 22(4): 767-783, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38167738

RESUMEN

Among the eight different triazolopyrimidine isomers existing in nature, 1,2,4-triazolo[1,5-a]pyrimidine (TZP) is one of the most studied and used isomers in medicinal chemistry. For some years, our group has been involved in developing regioselective one-pot procedures for the synthesis of 2-amino-7-aryl-5-methyl- and 2-amino-5-aryl-7-methyl-TZPs of interest in the preparation of antiviral agents. In this work, taking advantage of a Biginelli-like multicomponent reaction (MCR), we report the identification of finely tunable conditions to regioselectively synthesize C-6 ester-substituted amino-TZP analogues, both in dihydro and oxidized forms. Indeed, the use of mild acidic conditions is strongly directed toward the regioselective synthesis of 5-aryl-7-methyl C-6-substituted TZP analogues, while the use of neutral ionic liquids shifted the regioselectivity towards 7-aryl-5-methyl derivatives. In addition, the novel synthesized scaffolds were functionalized at the C-2 position and evaluated for their antiviral activity against RNA viruses (influenza virus, flaviviruses, and SARS-CoV-2). Compounds 25 and 26 emerged as promising anti-flavivirus agents, showing activity in the low micromolar range.


Asunto(s)
Líquidos Iónicos , Isomerismo , Pirimidinas/química , Estereoisomerismo
9.
J Med Virol ; 95(11): e29193, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37927140

RESUMEN

Since the beginning of the pandemic, SARS-CoV-2 has shown a great genomic variability, resulting in the continuous emergence of new variants that has made their global monitoring and study a priority. This work aimed to study the genomic heterogeneity, the temporal origin, the rate of viral evolution and the population dynamics of the main circulating variants (20E.EU1, Alpha and Delta) in Italy, in August 2020-January 2022 period. For phylogenetic analyses, three datasets were set up, each for a different main lineage/variant circulating in Italy in that time including other Italian and International sequences of the same lineage/variant, available in GISAID sampled in the same times. The international dataset showed 26 (23% Italians, 23% singleton, 54% mixed), 40 (60% mixed, 37.5% Italians, 1 singleton) and 42 (85.7% mixed, 9.5% singleton, 4.8% Italians) clusters with at least one Italian sequence, in 20E.EU1  clade, Alpha and Delta variants, respectively. The estimation of tMRCAs in the Italian clusters (including >70% of genomes from Italy) showed that in all the lineage/variant, the earliest clusters were the largest in size and the most persistent in time and frequently mixed. Isolates from the major Italian Islands tended to segregate in clusters more frequently than those from other part of Italy. The study of infection dynamics showed a positive correlation between the trend in the effective number of infections estimated by BSP model and the Re curves estimated by birth-death skyline plot. The present work highlighted different evolutionary dynamics of studied lineages with high concordance between epidemiological parameters estimation and phylodynamic trends suggesting that the mechanism of replacement of the SARS-CoV-2 variants must be related to a complex of factors involving the transmissibility, as well as the implementation of control measures, and the level of cross-immunization within the population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Filogenia , COVID-19/epidemiología , Genómica , Italia/epidemiología
10.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37631033

RESUMEN

In this work we investigated, for the first time, the effect of Plagius flosculosus (L.) Alavi & Heywood, a Sardinian-Corsican endemic plant, on HIV-1 integrase (IN) activity. The phytochemical analysis of the leaves chloroform extract led us to isolate and characterize three compounds (SPK1, SPK2, and SPK3) belonging to the spiroketals, a group of naturally occurring metabolites of phytochemical relevance with interesting biological properties. Due to their structural diversity, these cyclic ketals have attracted the interest of chemists and biologists. SPK1, SPK2, and SPK3 were evaluated here for their ability to inhibit HIV-1 integrase activity in biochemical assays. The results showed that all the compounds inhibited HIV-1 IN activity. In particular, the most active one was SPK3, which interfered in a low molecular range (IC50 of 1.46 ± 0.16 µM) with HIV-1 IN activity in the presence/absence of the LEDGF cellular cofactor. To investigate the mechanism of action, the three spiroketals were also tested on HIV-1 RT-associated Ribonuclease H (RNase H) activity, proving to be active in inhibiting this function. Although SPK3 was unable to inhibit viral replication in cell culture, it promoted the IN multimerization. We hypothesize that SPK3 inhibited HIV-1 IN through an allosteric mechanism of action.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA