Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Trends Pharmacol Sci ; 45(4): 290-303, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458847

RESUMEN

Accumulating evidence highlights the pivotal role of mitochondria in cardiovascular diseases (CVDs). Understanding the molecular mechanisms underlying mitochondrial dysfunction is crucial for developing targeted therapeutics. Recent years have seen substantial advancements in unraveling mitochondrial regulatory pathways in both normal and pathological states and the development of potent drugs. However, specific delivery of drugs into the mitochondria is still a challenge. We present recent findings on regulators of mitochondrial dynamics and reactive oxygen species (ROS), critical factors influencing mitochondrial function in CVDs. We also discuss advancements in drug delivery strategies aimed at overcoming the technical barrier in targeting mitochondria for CVD treatment.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Dinámicas Mitocondriales , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción
2.
J Cell Sci ; 134(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34096604

RESUMEN

In Saccharomyces cerevisiae, the selective autophagic degradation of mitochondria, termed mitophagy, is critically regulated by the adapter protein Atg32. Despite our knowledge about the molecular mechanisms by which Atg32 controls mitophagy, its physiological roles in yeast survival and fitness remains less clear. Here, we demonstrate a requirement for Atg32 in promoting spermidine production during respiratory growth and heat-induced mitochondrial stress. During respiratory growth, mitophagy-deficient yeast exhibit profound heat-stress induced defects in growth and viability due to impaired biosynthesis of spermidine and its biosynthetic precursor S-adenosyl methionine. Moreover, spermidine production is crucial for the induction of cytoprotective nitric oxide (NO) during heat stress. Hence, the re-addition of spermidine to Atg32 mutant yeast is sufficient to both enhance NO production and restore respiratory growth during heat stress. Our findings uncover a previously unrecognized physiological role for yeast mitophagy in spermidine metabolism and illuminate new interconnections between mitophagy, polyamine biosynthesis and NO signaling.


Asunto(s)
Mitofagia , Proteínas de Saccharomyces cerevisiae , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Respuesta al Choque Térmico/genética , Óxido Nítrico , Receptores Citoplasmáticos y Nucleares , Proteínas de Saccharomyces cerevisiae/genética , Espermidina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA