Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Commun ; 15(1): 1446, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365788

RESUMEN

In pancreatic ductal adenocarcinoma (PDAC), endogenous MYC is required for S-phase progression and escape from immune surveillance. Here we show that MYC in PDAC cells is needed for the recruitment of the PAF1c transcription elongation complex to RNA polymerase and that depletion of CTR9, a PAF1c subunit, enables long-term survival of PDAC-bearing mice. PAF1c is largely dispensable for normal proliferation and regulation of MYC target genes. Instead, PAF1c limits DNA damage associated with S-phase progression by being essential for the expression of long genes involved in replication and DNA repair. Surprisingly, the survival benefit conferred by CTR9 depletion is not due to DNA damage, but to T-cell activation and restoration of immune surveillance. This is because CTR9 depletion releases RNA polymerase and elongation factors from the body of long genes and promotes the transcription of short genes, including MHC class I genes. The data argue that functionally distinct gene sets compete for elongation factors and directly link MYC-driven S-phase progression to tumor immune evasion.


Asunto(s)
Fenómenos Bioquímicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-myc , Animales , Ratones , Carcinoma Ductal Pancreático/patología , Proliferación Celular , ARN Polimerasas Dirigidas por ADN/metabolismo , Evasión Inmune , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo
2.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38370764

RESUMEN

Although only a fraction of CTCF motifs are bound in any cell type, and approximately half of the occupied sites overlap cohesin, the mechanisms underlying cell-type specific attachment and ability to function as a chromatin organizer remain unknown. To investigate the relationship between CTCF and chromatin we applied a combination of imaging, structural and molecular approaches, using a series of brain and cancer associated CTCF mutations that act as CTCF perturbations. We demonstrate that binding and the functional impact of WT and mutant CTCF depend not only on the unique properties of each protein, but also on the genomic context of bound sites. Our studies also highlight the reciprocal relationship between CTCF and chromatin, demonstrating that the unique binding properties of WT and mutant proteins have a distinct impact on accessibility, TF binding, cohesin overlap, chromatin interactivity and gene expression programs, providing insight into their cancer and brain related effects.

4.
Prostaglandins Other Lipid Mediat ; 155: 106553, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33975019

RESUMEN

This study aimed to characterize the relationship between the COX2 and ALOX5 genes, as well as their link with the multidrug resistance (MDR) phenotype in sensitive (K562) and MDR (K562-Lucena and FEPS) erythroleukemia cells. For this, the inhibitors of 5-LOX (zileuton) and COX-2 (acetylsalicylic acid-ASA) and cells with the silenced ABCB1 gene were used. The treatment with ASA caused an increase in the gene expression of COX2 and ABCB1 in both MDR cell lines, and a decrease in the expression of ALOX5 in the FEPS cells. Silencing the ABCB1 gene induced a decrease in COX2 expression and an increase in the ALOX5 gene. Treatment with zileuton did not alter the expression of COX2 and ABCB1. Cytometry data showed that there was an increase in ABCB1 protein expression after exposure to ASA. In addition, the increased activity of ABCB1 in the K562-Lucena cell line indicates that ASA may be a substrate for this efflux pump, corroborating the molecular docking that showed that ASA can bind to ABCB1. Regardless of the genetic alteration in COX2 and ABCB1, the direct relationship between these genes and the inverse relationship with ALOX5 remained in the MDR cell lines. We assume that ABCB1 can play a regulatory role in COX2 and ALOX5 during the transformation of the parental cell line K562, explaining the increased gene expression of COX2 and decreased ALOX5 in the MDR cell lines.


Asunto(s)
Ciclooxigenasa 2
5.
Molecules ; 26(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578817

RESUMEN

Multidrug resistance (MDR) is the main challenge in the treatment of chronic myeloid leukemia (CML), and P-glycoprotein (P-gp) overexpression is an important mechanism involved in this resistance process. However, some compounds can selectively affect MDR cells, inducing collateral sensitivity (CS), which may be dependent on P-gp. The aim of this study was to investigate the effect of piperine, a phytochemical from black pepper, on CS induction in CML MDR cells, and the mechanisms involved. The results indicate that piperine induced CS, being more cytotoxic to K562-derived MDR cells (Lucena-1 and FEPS) than to K562, the parental CML cell. CS was confirmed by analysis of cell metabolic activity and viability, cell morphology and apoptosis. P-gp was partially required for CS induction. To investigate a P-gp independent mechanism, we analyzed the possibility that poly (ADP-ribose) polymerase-1 (PARP-1) could be involved in piperine cytotoxic effects. It was previously shown that only MDR FEPS cells present a high level of 24 kDa fragment of PARP-1, which could protect these cells against cell death. In the present study, piperine was able to decrease the 24 kDa fragment of PARP-1 in MDR FEPS cells. We conclude that piperine targets selectively MDR cells, inducing CS, through a mechanism that might be dependent or not on P-gp.


Asunto(s)
Alcaloides/farmacología , Apoptosis , Benzodioxoles/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Supervivencia Celular , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo
6.
Biomed Res Int ; 2020: 1487593, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134370

RESUMEN

PURPOSE: We aimed to identify prognostic factors for survival and recurrence of hepatocellular carcinoma (HCC) after liver transplantation (LT) for patients with HCC and hepatitis C virus-related cirrhosis (HCV-cirrhosis). METHODS: This retrospective cohort study followed all adult patients with HCV-cirrhosis who underwent LT because of HCC or had incidental HCC identified through pathologic examination of the explanted liver at a university hospital in Rio de Janeiro, Brazil, over 11 years (1998-2008). We used Cox regression models to assess the following risk factors regarding HCC recurrence or death after LT: age, Model for End-stage Liver Disease score, Child-Pugh classification, alpha-fetoprotein (AFP), whether patients had undergone locoregional treatment before transplantation, the number of packed red blood cell units (PRBCU) transfused during surgery, the number and size of HCC lesions in the explanted liver, and the presence of microvascular invasion and necrotic areas within HCC lesions. RESULTS: Seventy-six patients were followed up for a median (interquartile range (IQR)) of 4.4 (0.7-6.6) years. Thirteen (17%) patients had HCC recurrence during the follow-up period, and 26 (34%) died. The median survival time was 6.6 years (95% CI: 2.4-12.0), and the 5-year survival was 52.5% (95% CI: 42.3-65.0%). The final regression model for overall survival included four variables: age (hazard ratio (HR): 1.02, 95% CI: 0.96-1.08, P = 0.603), transplantation waiting time (HR: 1.00, 95% CI: 1.00-1.00, P = 0.190), preoperative AFP serum levels (HR: 1.01, 95% CI: 1.00-1.02, P = 0.006), and whether >4 PRBCU were transfused during surgery (HR: 1.15, 95% CI: 1.05-1.25, P = 0.001). The final cause-specific Cox regression model for HCC recurrence included only microvascular invasion (HR: 14.86, 95% CI: 4.47-49.39, P < 0.001). CONCLUSION: In this study of LT for HCV-cirrhosis, preoperative AFP levels and the number of PRBCU transfused during surgery were associated with overall survival, whereas microvascular invasion with HCC recurrence.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico , Hepatitis C/diagnóstico , Cirrosis Hepática/diagnóstico , Neoplasias Hepáticas/diagnóstico , Trasplante de Hígado , Recurrencia Local de Neoplasia/diagnóstico , Biomarcadores de Tumor/sangre , Transfusión Sanguínea/estadística & datos numéricos , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/virología , Femenino , Hepacivirus/crecimiento & desarrollo , Hepacivirus/patogenicidad , Hepatitis C/complicaciones , Hepatitis C/mortalidad , Hepatitis C/virología , Humanos , Cirrosis Hepática/etiología , Cirrosis Hepática/mortalidad , Cirrosis Hepática/virología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/virología , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/etiología , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/virología , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo , alfa-Fetoproteínas/metabolismo
7.
Phys Rev Lett ; 124(17): 176401, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32412286

RESUMEN

The Rashba effect is fundamental to the physics of two-dimensional electron systems and underlies a variety of spintronic phenomena. It has been proposed that the formation of Rashba-type spin splittings originates microscopically from the existence of orbital angular momentum (OAM) in the Bloch wave functions. Here, we present detailed experimental evidence for this OAM-based origin of the Rashba effect by angle-resolved photoemission (ARPES) and two-photon photoemission experiments for a monolayer AgTe on Ag(111). Using quantitative low-energy electron diffraction analysis, we determine the structural parameters and the stacking of the honeycomb overlayer with picometer precision. Based on an orbital-symmetry analysis in ARPES and supported by first-principles calculations, we unequivocally relate the presence and absence of Rashba-type spin splittings in different bands of AgTe to the existence of OAM.

8.
Mol Cell ; 77(6): 1322-1339.e11, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32006464

RESUMEN

Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo , Empalmosomas/metabolismo , Transcripción Genética , Animales , Núcleo Celular/genética , Cromatina/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Proteínas Quinasas/genética , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Empalme del ARN , Proteínas Represoras/genética , Empalmosomas/genética
9.
Front Oncol ; 8: 441, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30460192

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2018.00090.].

10.
Front Oncol ; 8: 90, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29675398

RESUMEN

Cancer outcome has improved since introduction of target therapy. However, treatment success is still impaired by the same drug resistance mechanism of classical chemotherapy, known as multidrug resistance (MDR) phenotype. This phenotype promotes resistance to drugs with different structures and mechanism of action. Recent reports have shown that resistance acquisition is coupled to metabolic reprogramming. High-gene expression, increase of active transport, and conservation of redox status are one of the few examples that increase energy and substrate demands. It is not clear if the role of this metabolic shift in the MDR phenotype is related to its maintenance or to its induction. Apart from the nature of this relation, the metabolism may represent a new target to avoid or to block the mechanism that has been impairing treatment success. In this mini-review, we discuss the relation between metabolism and MDR resistance focusing on the multiple non-metabolic functions that enzymes of the glycolytic pathway are known to display, with emphasis with the diverse activities of glyceraldehyde-3-phosphate dehydrogenase.

11.
RNA ; 22(8): 1190-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27284166

RESUMEN

Trypanosoma brucei, the etiologic agent of sleeping sickness, encodes a single intron-containing tRNA, tRNA(Tyr), and splicing is essential for its viability. In Archaea and Eukarya, tRNA splicing requires a series of enzymatic steps that begin with intron cleavage by a tRNA-splicing endonuclease and culminates with joining the resulting tRNA exons by a splicing tRNA ligase. Here we explored the function of TbTrl1, the T. brucei homolog of the yeast Trl1 tRNA ligase. We used a combination of RNA interference and molecular biology approaches to show that down-regulation of TbTrl1 expression leads to accumulation of intron-containing tRNA(Tyr) and a concomitant growth arrest at the G1 phase. These defects were efficiently rescued by expression of an "intronless" version of tRNA(Tyr) in the same RNAi cell line. Taken together, these experiments highlight the crucial importance of the TbTrl1 for tRNA(Tyr) maturation and viability, while revealing tRNA splicing as its only essential function.


Asunto(s)
Intrones , ARN de Transferencia de Tirosina/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales
12.
Biosci Rep ; 33(6)2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24070327

RESUMEN

The hallmark of CML (chronic myeloid leukaemia) is the BCR (breakpoint cluster region)-ABL fusion gene. CML evolves through three phases, based on both clinical and pathological features: a chronic phase, an accelerated phase and blast crisis. TKI (tyrosine kinase inhibitors) are the treatment modality for patients with chronic phase CML. The therapeutic potential of the TKI imatinib is affected by BCR-ABL dependent an independent mechanisms. Development of MDR (multidrug resistance) contributes to the overall clinical resistance. MDR involves overexpression of ABC -transporters (ATP-binding-cassette transporter) among other features. MDR studies include the analysis of cancer cell lines selected for resistance. CML blast crisis is accompanied by increased resistance to apoptosis. This work reviews the role played by the influx transporter OCT1 (organic cation transporter 1), by efflux ABC transporters, molecules involved in the modulation of apoptosis (p53, Bcl-2 family, CD95, IAPs (inhibitors of apoptosis protein)], Hh and Wnt/ß-catenin pathways, cytoskeleton abnormalities and other features described in leukaemic cells of clinical samples and CML cell lines. An MDR cell line, Lucena-1, generated from K562 by stepwise exposure to vincristine, was used as our model and some potential anticancer drugs effective against the MDR cell line and patients' samples are presented.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Señalización del Calcio , Línea Celular Tumoral , Citoesqueleto/metabolismo , Resistencia a Múltiples Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Neoplásicas/metabolismo , Transportador 1 de Catión Orgánico/metabolismo , Vía de Señalización Wnt
13.
Mol Cell Biochem ; 383(1-2): 123-35, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23877223

RESUMEN

The multidrug-resistant (MDR) phenotype is multifactorial, and cell lines presenting multiple resistance mechanisms might be good models to understand the importance of the various pathways involved. The present work characterized a MDR chronic myeloid leukemia cell line, derived from K562 through a selective process using daunorubicin. This MDR cell line was shown to be resistant to vincristine, daunorubicin, and partially resistant to imatinib. It showed a slower duplication rate. Overexpression of ABCB1 and ABCC1 was observed at the protein and functional levels and the expression of CD95, a molecule related to cell death, was reduced in the MDR cell line. Conversely, no differences were observed related to the anti-apoptotic molecule Bcl-2 or p53 expression. The activation antigen CD69 was reduced in the MDR cell line and treatment with imatinib further decreased the expressed levels. Furthermore, secretion of IL-8 was diminished in the MDR cell line. When daunorubicin-selected cells were compared to another MDR cell line, Lucena 1, derived from the same parental line K562, and selected with vincristine, a different profile was observed in relation to most aspects studied. When both cell lines were silenced for ABCB1, differences in CD69 and CD95 were maintained, despite resistance reversal. These results reinforce the idea that cell lines selected in vitro may display multiple resistance strategies that may vary with the selective agent used as well as during different steps of the selection process.


Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Citometría de Flujo , Silenciador del Gen/efectos de los fármacos , Humanos , Interleucina-8/metabolismo , Lectinas Tipo C/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Fenotipo , Receptor fas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA