Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014624

RESUMEN

The aqueous extract of Alternanthera sessilis (As) acts as the precursors for the quick reduction of silver ions, which leads to the formation of silver nanoparticles. In the agar, well diffusion method of the Klebsiella pneumoniae shows the minimal inhibitory concentration of 12 mm against A. sessilis mediated silver nanoparticles (As-AgNPs) at 60 µg/mL concentration. Fabric treated with novel AS-AgNPs is tested against the K. pneumoniae and shows an inhibitory action of 12 mm with mixed cotton that determines the antimicrobial efficacy of the fabrics. Uv- visible spectrophotometer was performed, showing a surface plasmon resonance peak at 450 nm cm-1. FTIR shows the vibration and the infrared radiation at a specific wavelength of 500-4000 cm-1. The HR-TEM analysis showed the presence of black-white crystalline, spherical-shaped As-AgNPs embedded on the fabrics range of 15 nm-40 nm. In the scanning electron microscope, the presence of small ball-shaped As-AgNPs embedded on the fabrics at a voltage of 30 KV was found with a magnification of 578X. EDAX was performed in which the nanoparticles show a peak of 2.6-3.9 KeV, and it also reveals the presence of the composition, distribution, and elemental mapping of the nanoparticles. The cytotoxic activity of synthesized nanosilver was carried out against L929 cell lines, which show cell viability at a concentration of 2.5 µg mL-1. Cell proliferation assay shows no cytotoxicity against L929 cell lines for 24 h. In this study, the green synthesis of silver nanoparticles from A. sessilis appears to be a cheap, eco-friendly, and alternative approach for curing infectious ulcers on the floor of the stratum corneum. Nanotechnology conjoined with herbal therapeutics provides a promising solution for wound management.

2.
Environ Pollut ; 307: 119412, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35568287

RESUMEN

Synthetic azo dyes are extensively used in the textile industries, which are being released as textile effluent into the environment presence of azo dyes in the environment is great environmental concern therefore treatment of textile effluent is crucial for proper release of the effluent into the environment. Electrochemical oxidation (EO) is extensively used in the degradation of pollutants because of its high efficiency. In this study, photo-assisted electrooxidation (PEO) followed by biodegradation of the textile effluent was evaluated. The pretreatment of textile effluent was conducted by EO and PEO in a tubular flow cell with TiO2-Ti/IrO2-RuO2 anode and titanium cathode under different current densities (10, 15, and 20 mA cm-2). The chemical oxygen demand level reduced from 3150 mg L-1 to 1300 and 600 mg L-1under EO and PEO, respectively. Furthermore, biodegradation of EO and PEO pretreated textile effluent shows reduction in chemical oxygen demand (COD) from 1300 mg L-1 to 900 mg L-1and 600 mg L-1to 110 mg L-1, respectively. The most abundant genera were identified as Acetobacter, Achromobacter, Acidaminococcus, Actinomyces, and Acetomicrobium from the textile effluent. This study suggests that an integrated approach of PEO and subsequent biodegradation might be an effective and eco-friendly method for the degradation of textile effluent.


Asunto(s)
Industria Textil , Contaminantes Químicos del Agua , Compuestos Azo , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Colorantes , Electrodos , Textiles , Contaminantes Químicos del Agua/análisis
3.
Chemosphere ; 297: 133993, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35189197

RESUMEN

A visible light driven BiOBr/BixY1-xWO6 nanocomposite photocatalyst of various compositions are prepared by the addition of different amounts of KBr (0.5, 1.0, 1.5, 2.0 mmol) in BixY1-xWO6 by a one-pot hydrothermal method. Furthermore, the photocatalytic properties of the as-prepared materials are analyzed by the decomposition of methylene blue under visible light illumination. In particular, the BiOBr/BixY1-xWO6 nanocomposite prepared by taking 1.5 mmol of KBr present a superior photocatalytic ability (78.3%) with the rate constant value 0.016 min-1, a low bandgap (Eg = 2.51 eV) as well as photoluminescence emission intensity than other photocatalysts prepared in this study. The radical scavenging studies revealed that OH and h+ performed an imperative role in the decomposition of methylene blue. Furthermore, the optimized photocatalyst is stable even after four cycles, which exposes the excellent photostability and reusability properties of the photocatalyst. In addition, a plausible mechanism of decomposition of methylene blue under visible light irradiation is also proposed.

4.
Environ Res ; 200: 111365, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34033832

RESUMEN

In the present work, a visible light driven AgVO3/BiOI nanocomposite photocatalyst with different wt % (1, 2, 3) of AgVO3 was fabricated by using facile hydrothermal method. Further, the nanocomposite was characterized by FT-IR, XRD, SEM, TEM, EDS, UV-vis DRS, photoluminescence and photoelectrochemical studies. The structural characterization showed nanorods on nanosheet surface. Among different AgVO3 loaded samples, the photocatalytic efficiency of 1 wt % AgVO3/BiOI nanocomposite was found to be comparatively higher than the pure BiOI and AgVO3. The photodegradation rate constant values of pure BiOI, AgVO3 and 1, 2, 3 wt % AgVO3/BiOI nanocomposites are 0.006, 0.0033, 0.0255, 0.01575, 0.0116 min-1 respectively. This enhanced photocatalytic activity was due to the increasing visible light absorption ability and efficient separation of the charge carriers. Thereby, the 1 wt % AgVO3/BiOI nanocomposite photocatalyst exhibited increased photodegradation activity, photostability and recyclability characteristics. The radical trapping experiment confirmed the role of OH and h+ in the photocatalytic degradation of RhB. Based on this, the probable mechanism of degradation of RhB under visible light irradiation has also been proposed. Hence, we believe it could be a promising material that can be employed for the photodegradation of organic pollutants present in wastewater.


Asunto(s)
Nanocompuestos , Catálisis , Luz , Rodaminas , Espectroscopía Infrarroja por Transformada de Fourier
5.
J Genet Eng Biotechnol ; 16(2): 239-252, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30733731

RESUMEN

Bacteria communicate within a system by means of a density dependent mechanism known as quorum sensing which regulate the metabolic and behavioral activities of a bacterial community. This sort of interaction occurs through a dialect of chemical signals called as autoinducers synthesized by bacteria. Bacterial quorum sensing occurs through various complex pathways depending upon specious diversity. Therefore the cognizance of quorum sensing mechanism will enable the regulation and thereby constrain bacterial communication. Inhibition strategies of quorum sensing are collectively called as quorum quenching; through which bacteria are incapacitated of its interaction with each other. Many virulence mechanism such as sporulation, biofilm formation, toxin production can be blocked by quorum quenching. Usually quorum quenching mechanisms can be broadly classified into enzymatic methods and non-enzymatic methods. Substantial understanding of bacterial communication and its inhibition enhances the development of novel antibacterial therapeutic drugs. In this review we have discussed the types and mechanisms of quorum sensing and various methods to inhibit and regulate density dependent bacterial communication.

6.
J Genet Eng Biotechnol ; 16(2): 381-386, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30733750

RESUMEN

The present study was intended to optimize the quorum sensing inhibitory action of Solanum torvum root extract against Chromobacterium violaceum. Factors such as bacterial density, frequency of administration and concentration of extract were analysed. Plant samples were collected from Thrissur District, Kerala, India. Response surface modelling of factors by Box-Behnken approach was employed for optimizing quorum quenching activity of extract. The adequacy of mathematical model was verified by ANOVA and Cook's distance table. Results revealed that quorum quenching property of Solanum torvum root extract is highly influenced by variables studied whereas maximum activity was found during administration of 300 µg/ml extract thrice in a day. It was also understood that extract does not possess any bactericidal activity wherein it only silence its quorum sensing mediated functions. This observations can be further used in quorum quenching studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA