Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 282(47): 34381-91, 2007 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17878160

RESUMEN

High-grade glioma cells express subunits of the ENaC/Deg superfamily, including members of ASIC subfamily. Our previous work has shown that glioma cells exhibit a basally active cation current, which is not present in low-grade tumor cells or normal astrocytes, and that can be blocked by amiloride. When ASIC2 is present within the channel complex in the plasma membrane, the channel is rendered non-functional because of inherent negative effectors that require ASIC2. We have previously shown that high-grade glioma cells functionally express this current because of the lack of ASIC2 in the plasma membrane. We now hypothesize that ASIC2 trafficking in glioma cells is regulated by a specific chaperone protein, namely Hsc70. Our results demonstrated that Hsc70 co-immunoprecipitates with ASIC2 and that it is overexpressed in glioma cells as compared with normal astrocytes. In contrast, there was no difference in the expression of calnexin, which also co-immunoprecipitates with ASIC2. In addition, glycerol and sodium 4-phenylbutyrate reduced the amount of Hsc70 expressed in glioma cells to levels found in normal astrocytes. Transfection of Hsc70 siRNA inhibited the constitutively activated amiloride-sensitive current, decreased migration, and increased ASIC2 surface expression in glioma cells. These results support an association between Hsc70 and ASIC2 that may underlie the increased retention of ASIC2 in the endoplasmic reticulum of glioma cells. The data also suggest that decreasing Hsc70 expression promotes reversion of a high-grade glioma cell to a more normal astrocytic phenotype.


Asunto(s)
Retículo Endoplásmico/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Glioma/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Canales de Sodio/biosíntesis , Canales Iónicos Sensibles al Ácido , Astrocitos/metabolismo , Calnexina/biosíntesis , Calnexina/genética , Línea Celular Tumoral , Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/genética , Proteínas del Choque Térmico HSC70/antagonistas & inhibidores , Proteínas del Choque Térmico HSC70/genética , Humanos , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Canales de Sodio/genética , Transfección
2.
FASEB J ; 21(1): 18-25, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17110465

RESUMEN

Sulfonylurea receptors SUR1 and SUR2 are the regulatory subunits of K(ATP) channels. Their differential affinity for hypoglycemic sulfonylureas provides a basis for the selectivity of these compounds for different K(ATP) channel isoforms. Sulfonylureas have a 100- to 1000-fold greater affinity for SUR1 vs. SUR2. Structure-activity studies suggested a bipartite binding pocket. Chimeric SUR1 approximately SUR2 receptors have shown TMD2, the third bundle of transmembrane helices, to be part of an "A" site that confers SUR1 selectivity for sulfonylureas. The purpose of this study is to determine the position of the "B" site. Previous photoaffinity labeling studies have placed the B site on the amino-terminal third of SUR and colabeled the associated K(IR). In our study, deletion of TMD0, the first bundle of transmembrane helices, did not compromise labeling. Further deletions into the cytoplasmic linker, L0, eliminated binding and labeling. Alanine substitutions in L0 identified a limited number of conserved residues, Y230 and W232, important for affinity labeling. A fragment of K(IR)6.2, missing M2 and the entire carboxyl terminal, assembles with SUR1 and is affinity labeled, while deletion of 10 or more amino-terminal residues compromises labeling. These studies indicate that the B site involves L0 and the K(IR) amino terminus, elements that are critical for control of channel gating.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales de Potasio/metabolismo , Compuestos de Sulfonilurea/metabolismo , Marcadores de Afinidad , Alanina/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Western Blotting , Células COS , Chlorocebus aethiops , Cricetinae , Gliburida/metabolismo , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa , Canales de Potasio/química , Canales de Potasio/genética , Relación Estructura-Actividad
3.
Biophys J ; 91(4): 1325-35, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16751248

RESUMEN

Electrostatic surface potentials in the vestibule of the nicotinic acetylcholine receptor (nAChR) were computed from structural models using the University of Houston Brownian Dynamics program to determine their effect on ion conduction and ionic selectivity. To further determine whether computed potentials accurately reflect the electrostatic environment of the channel, the potentials were used to predict the rate constants for diffusion-enhanced fluorescence energy transfer; the calculated energy transfer rates are directly comparable with those determined experimentally (see companion article by Meltzer et al. in this issue). To include any effects on the local potentials by the bound acceptor fluorophore crystal violet, its binding site was first localized within the pore by fluorescence energy transfer measurements from dansyl-C6-choline bound to the agonist sites and also by simulations of binding using Autodock. To compare the computed potentials with those determined experimentally, we used the predicted energy transfer rates from Tb3+ chelates of varying charge to calculate an expected potential using the Boltzmann relationship. This expected potential (from -20 to -40 mV) overestimates the values determined experimentally (from -10 to -25 mV) by two- to fourfold at similar conditions of ionic strength. Although the results indicate a basic discrepancy between experimental and computed surface potentials, both methods demonstrate that the vestibular potential has a relatively small effect on conduction and selectivity.


Asunto(s)
Membrana Celular/química , Activación del Canal Iónico , Potenciales de la Membrana , Modelos Químicos , Modelos Moleculares , Receptores Nicotínicos/química , Simulación por Computador , Transferencia Resonante de Energía de Fluorescencia , Porosidad , Electricidad Estática
4.
J Biol Chem ; 281(28): 19220-32, 2006 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-16704974

RESUMEN

Gliomas are primary brain tumors with a complex biology characterized by antigenic and genomic heterogeneity and a propensity for invasion into normal brain tissue. High grade glioma cells possess a voltage-independent, amiloride-inhibitable, inward Na+ current. This current does not exist in normal astrocytes or low grade tumor cells. Inhibition of this conductance decreases glioma growth and cell migration making it a potential therapeutic target. Our previous results have shown that the acid-sensing ion channels (ASICs), members of the epithelial Na+ channel (ENaC)/degenerin (DEG) family of ion channels are part of this current pathway. We hypothesized that one member of the ENaC/DEG family, ASIC2, is retained intracellularly and that it is the lack of functional expression of ASIC2 at the cell surface that results in hyperactivity of this conductance in high grade gliomas. In this study we show that the chemical chaperone, glycerol, and the transcriptional regulator, sodium 4-phenylbutyrate, inhibit the constitutively activated inward current and reduce cell growth and migration in glioblastoma multiforme. The results suggest that these compounds induce the movement of ASIC2 to the plasma membrane, and once there, the basally active inward current characteristic of glioma cells is abolished by inherent negative regulatory mechanisms. This in turn compromises the ability of the glioma cell to migrate and proliferate. These results support the hypothesis that the conductance pathway in high grade glioma cells is comprised of ENaC/DEG subunits and that abolishing this channel activity promotes a reversion of a high grade glioma cell to a phenotype resembling that of normal astrocytes.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Canales de Sodio/fisiología , Canales Iónicos Sensibles al Ácido , Amilorida/farmacología , Antineoplásicos/farmacología , Membrana Celular/metabolismo , Movimiento Celular , Proliferación Celular , Glioblastoma/patología , Glicerol/farmacología , Humanos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fenilbutiratos/farmacología , Sodio/química , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo
5.
Diabetes ; 53 Suppl 3: S104-12, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15561897

RESUMEN

Advances in understanding the overall structural features of inward rectifiers and ATP-binding cassette (ABC) transporters are providing novel insight into the architecture of ATP-sensitive K+ channels (KATP channels) (KIR6.0/SUR)4. The structure of the K(IR) pore has been modeled on bacterial K+ channels, while the lipid-A exporter, MsbA, provides a template for the MDR-like core of sulfonylurea receptor (SUR)-1. TMD0, an NH2-terminal bundle of five alpha-helices found in SURs, binds to and activates KIR6.0. The adjacent cytoplasmic L0 linker serves a dual function, acting as a tether to link the MDR-like core to the KIR6.2/TMD0 complex and exerting bidirectional control over channel gating via interactions with the NH2-terminus of the KIR. Homology modeling of the SUR1 core offers the possibility of defining the glibenclamide/sulfonylurea binding pocket. Consistent with 30-year-old studies on the pharmacology of hypoglycemic agents, the pocket is bipartite. Elements of the COOH-terminal half of the core recognize a hydrophobic group in glibenclamide, adjacent to the sulfonylurea moiety, to provide selectivity for SUR1, while the benzamido group appears to be in proximity to L0 and the KIR NH2-terminus.


Asunto(s)
Adenosina Trifosfato/fisiología , Canales de Potasio/química , Canales de Potasio/fisiología , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Humanos , Hipoglucemiantes/farmacología , Modelos Moleculares , Canales de Potasio/efectos de los fármacos , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/fisiología , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA