Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
bioRxiv ; 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39416214

RESUMEN

Dopamine (DA) signaling plays an essential role in reward valence attribution and in encoding the reinforcing properties of natural and artificial rewards. The adaptive responses from midbrain dopamine neurons to artificial rewards such as drugs of abuse are therefore important for understanding the development of substance use disorders. Drug-induced changes in gene expression are one such adaptation that can determine the activity of dopamine signaling in projection regions of the brain reward system. One of the major challenges to obtaining this understanding involves the complex cellular makeup of the brain, where each neuron population can be defined by a distinct transcriptional profile. To bridge this gap, we have adapted a virus-based method for labeling and capture of dopamine nuclei, coupled with nuclear RNA-sequencing, to study the transcriptional adaptations, specifically, of dopamine neurons in the ventral tegmental area (VTA) during cocaine taking and cocaine craving, using a mouse model of cocaine intravenous self-administration (IVSA). Our results show significant changes in gene expression across non-drug operant training, cocaine taking, and cocaine craving, highlighted by an enrichment of repressive epigenetic modifying enzyme gene expression during cocaine craving. Immunohistochemical validation further revealed an increase of H3K9me3 deposition in DA neurons during cocaine craving. These results demonstrate that cocaine-induced transcriptional adaptations in dopamine neurons vary by phase of self-administration and underscore the utility of this approach for identifying relevant phase-specific molecular targets to study the behavioral course of substance use disorders.

2.
bioRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39149259

RESUMEN

Microglia, the innate immune cells in the central nervous system, exhibit distinct transcriptional profiles across brain regions that are important for facilitating their specialized function. There has been recent interest in identifying the epigenetic modifications associated with these distinct transcriptional profiles, as these may improve our understanding of the underlying mechanisms governing the functional specialization of microglia. One obstacle to achieving this goal is the large number of microglia required to obtain a genome-wide profile for a single histone modification. Given the cellular and regional heterogeneity of the brain, this would require pooling many samples which would impede biological applications that are limited by numbers of available animals. To overcome this obstacle, we have adapted a method of chromatin profiling known as Cleavage Under Targets and Tagmentation (CUT&Tag-Direct) to profile histone modifications associated with regional differences in gene expression throughout the brain reward system. Consistent with previous studies, we find that transcriptional profiles of microglia vary by brain region. However, here we report that these regional differences also exhibit transcriptional network signatures specific to each region. Additionally, we find that these region-dependent network signatures are associated with differential deposition of H3K27ac and H3K7me3, and while the H3K27me3 landscape is remarkably stable across brain regions, the H3K27ac landscape is most consistent with the anatomical location of microglia which explain their distinct transcriptional profiles. Altogether, these findings underscore the established role of H3K27me3 in cell fate determination and support the active role of H3K27ac in the dynamic regulation of microglial gene expression. In this study, we report a molecular and computational framework that can be applied to improve our understanding of the role of epigenetic regulation in microglia in both health and disease, using as few as 2,500 cells per histone mark.

3.
Brain Behav Immun ; 120: 339-351, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838836

RESUMEN

Methamphetamine use disorder (MUD) is a chronic, relapsing disease that is characterized by repeated drug use despite negative consequences and for which there are currently no FDA-approved cessation therapeutics. Repeated methamphetamine (METH) use induces long-term gene expression changes in brain regions associated with reward processing and drug-seeking behavior, and recent evidence suggests that methamphetamine-induced neuroinflammation may also shape behavioral and molecular responses to the drug. Microglia, the resident immune cells in the brain, are principal drivers of neuroinflammatory responses and contribute to the pathophysiology of substance use disorders. Here, we investigated transcriptional and morphological changes in dorsal striatal microglia in response to methamphetamine-taking and during methamphetamine abstinence, as well as their functional contribution to drug-taking behavior. We show that methamphetamine self-administration induces transcriptional changes associated with protein folding, mRNA processing, immune signaling, and neurotransmission in dorsal striatal microglia. Importantly, many of these transcriptional changes persist through abstinence, a finding supported by morphological analyses. Functionally, we report that microglial ablation increases methamphetamine-taking, possibly involving neuroimmune and neurotransmitter regulation. In contrast, microglial depletion during abstinence does not alter methamphetamine-seeking. Taken together, these results suggest that methamphetamine induces both short and long-term changes in dorsal striatal microglia that contribute to altered drug-taking behavior and may provide valuable insights into the pathophysiology of MUD.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Comportamiento de Búsqueda de Drogas , Metanfetamina , Microglía , Autoadministración , Metanfetamina/farmacología , Microglía/metabolismo , Microglía/efectos de los fármacos , Animales , Masculino , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Ratones , Trastornos Relacionados con Anfetaminas/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Ratones Endogámicos C57BL , Refuerzo en Psicología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
4.
Curr Biol ; 34(2): 389-402.e5, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38215742

RESUMEN

Aversive stimuli activate corticotropin-releasing factor (CRF)-expressing neurons in the paraventricular nucleus of hypothalamus (PVNCRF neurons) and other brain stress systems to facilitate avoidance behaviors. Appetitive stimuli also engage the brain stress systems, but their contributions to reward-related behaviors are less well understood. Here, we show that mice work vigorously to optically activate PVNCRF neurons in an operant chamber, indicating a reinforcing nature of these neurons. The reinforcing property of these neurons is not mediated by activation of the hypothalamic-pituitary-adrenal (HPA) axis. We found that PVNCRF neurons send direct projections to the ventral tegmental area (VTA), and selective activation of these projections induced robust self-stimulation behaviors, without activation of the HPA axis. Similar to the PVNCRF cell bodies, self-stimulation of PVNCRF-VTA projection was dramatically attenuated by systemic pretreatment of CRF receptor 1 or dopamine D1 receptor (D1R) antagonist and augmented by corticosterone synthesis inhibitor metyrapone, but not altered by dopamine D2 receptor (D2R) antagonist. Furthermore, we found that activation of PVNCRF-VTA projections increased c-Fos expression in the VTA dopamine neurons and rapidly triggered dopamine release in the nucleus accumbens (NAc), and microinfusion of D1R or D2R antagonist into the NAc decreased the self-stimulation of these projections. Together, our findings reveal an unappreciated role of PVNCRF neurons and their VTA projections in driving reward-related behaviors, independent of their core neuroendocrine functions. As activation of PVNCRF neurons is the final common path for many stress systems, our study suggests a novel mechanism underlying the positive reinforcing effect of stressful stimuli.


Asunto(s)
Hormona Liberadora de Corticotropina , Hormonas Liberadoras de Hormona Hipofisaria , Ratones , Animales , Hormona Liberadora de Corticotropina/metabolismo , Hormonas Liberadoras de Hormona Hipofisaria/metabolismo , Hormonas Liberadoras de Hormona Hipofisaria/farmacología , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Hipotálamo/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Neuronas Dopaminérgicas/metabolismo
5.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37961443

RESUMEN

Methamphetamine use disorder (MUD) is a chronic, relapsing disease that is characterized by repeated drug use despite negative consequences and for which there are currently no FDA-approved cessation therapeutics. Repeated methamphetamine (METH) use induces long-term gene expression changes in brain regions associated with reward processing and drug-seeking behavior, and recent evidence suggests that methamphetamine-induced neuroinflammation may also shape behavioral and molecular responses to the drug. Microglia, the resident immune cells in the brain, are principal drivers of neuroinflammatory responses and contribute to the pathophysiology of substance use disorders. Here, we investigated transcriptional and morphological changes in dorsal striatal microglia in response to methamphetamine-taking and during methamphetamine abstinence, as well as their functional contribution to drug-taking behavior. We show that methamphetamine self-administration induces transcriptional changes associated with protein folding, mRNA processing, immune signaling, and neurotransmission in dorsal striatal microglia. Importantly, many of these transcriptional changes persist through abstinence, a finding supported by morphological analyses. Functionally, we report that microglial ablation increases methamphetamine-taking, possibly involving neuroimmune and neurotransmitter regulation, and that post-methamphetamine microglial repopulation attenuates drug-seeking following a 21-day period of abstinence. In contrast, microglial depletion during abstinence did not alter methamphetamine-seeking. Taken together, these results suggest that methamphetamine induces both short and long-term changes in dorsal striatal microglia that contribute to altered drug-taking behavior and may provide valuable insights into the pathophysiology of MUD.

6.
Mol Cell Neurosci ; 125: 103838, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36893849

RESUMEN

Microglia are widely known for their role in immune surveillance and for their ability to refine neurocircuitry during development, but a growing body of evidence suggests that microglia may also play a complementary role to neurons in regulating the behavioral aspects of substance use disorders. While many of these efforts have focused on changes in microglial gene expression associated with drug-taking, epigenetic regulation of these changes has yet to be fully understood. This review provides recent evidence supporting the role of microglia in various aspects of substance use disorder, with particular focus on changes to the microglial transcriptome and the potential epigenetic mechanisms driving these changes. Further, this review discusses the latest technical advances in low-input chromatin profiling and highlights the current challenges for studying these novel molecular mechanisms in microglia.


Asunto(s)
Microglía , Trastornos Relacionados con Sustancias , Humanos , Microglía/metabolismo , Epigénesis Genética , Cromatina/metabolismo , Trastornos Relacionados con Sustancias/genética , Trastornos Relacionados con Sustancias/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA