RESUMEN
During inertial confinement fusion experiments at the National Ignition Facility (NIF), a capsule filled with deuterium and tritium (DT) gas, surrounded by a DT ice layer and a high-density carbon ablator, is driven to the temperature and densities required to initiate fusion. In the indirect method, 2 MJ of NIF laser light heats the inside of a gold hohlraum to a radiation temperature of 300 eV; thermal x rays from the hohlraum interior couple to the capsule and create a central hotspot at tens of millions degrees Kelvin and a density of 100-200 g/cm3. During the laser interaction with the gold wall, m-band x rays are produced at â¼2.5 keV; these can penetrate into the capsule and preheat the ablator and DT fuel. Preheat can impact instability growth rates in the ablation front and at the fuel-ablator interface. Monitoring the hohlraum x-ray spectrum throughout the implosion is, therefore, critical; for this purpose, a Multilayer Mirror (MLM) with flat response in the 2-4 keV range has been installed in the NIF 37° Dante calorimeter. Precision engineering and x-ray calibration of components mean the channel will report 2-4 keV spectral power with an uncertainty of ±8.7%.
RESUMEN
We report a laser-plasma experiment that was carried out at the LMJ-PETAL facility and realized the first magnetized, turbulent, supersonic (Ma_{turb}≈2.5) plasma with a large magnetic Reynolds number (Rm≈45) in the laboratory. Initial seed magnetic fields were amplified, but only moderately so, and did not become dynamically significant. A notable absence of magnetic energy at scales smaller than the outer scale of the turbulent cascade was also observed. Our results support the notion that moderately supersonic, low-magnetic-Prandtl-number plasma turbulence is inefficient at amplifying magnetic fields compared to its subsonic, incompressible counterpart.
RESUMEN
The effectiveness of a dome-shaped wall covered by a thin gold foil (hollow wall) [M. Vandenboomgaerde et al., Phys. Plasmas 25, 012713 (2018)PHPAEN1070-664X10.1063/1.5008669] in holding back the high-Z plasma expansion in a gas-filled hohlraum is demonstrated for the first time in experiments reproducing the irradiation conditions of indirect drive at the ignition scale. The setup exploits a 1D geometry enabling record of the complete history of the gold expansion for 8 ns by imaging its emission in multiple x-ray energy ranges featuring either the absorption zones or the thermal emission regions. The measured expansion dynamics is well reproduced by numerical simulations. This novel wall design could now be tailored for the megajoule scale to enable the propagation of the inner beams up to the equator in low gas-filled hohlraum thus allowing the fine-tuning of the irradiation symmetry on the timescale required for ignition.
RESUMEN
Ion stopping experiments in plasma for beam energies of few hundred keV per nucleon are of great interest to benchmark the stopping-power models in the context of inertial confinement fusion and high-energy-density physics research. For this purpose, a specific ion detector on chemical-vapor-deposition diamond basis has been developed for precise time-of-flight measurements of the ion energy loss. The electrode structure is interdigitated for maximizing its sensitivity to low-energy ions, and it has a finger width of 100 µm and a spacing of 500 µm. A short single α-particle response is obtained, with signals as narrow as 700 ps at full width at half maximum. The detector has been tested with α-particle bunches at a 500 keV per nucleon energy, showing an excellent time-of-flight resolution down to 20 ps. In this way, beam energy resolutions from 0.4 keV to a few keV have been obtained in an experimental configuration using a 100 µg/cm2 thick carbon foil as an energy-loss target and a 2 m time-of-flight distance. This allows a highly precise beam energy measurement of δE/E ≈ 0.04%-0.2% and a resolution on the energy loss of 0.6%-2.5% for a fine testing of stopping-power models.
RESUMEN
CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.
RESUMEN
An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution
RESUMEN
This paper deals with theoretical studies on the 2p-3d absorption in iron, nickel, and copper plasmas related to LULI2000 (Laboratoire pour l'Utilisation des Lasers Intenses, 2000J facility) measurements in which target temperatures were of the order of 20 eV and plasma densities were in the range 0.004-0.01 g/cm(3). The radiatively heated targets were close to local thermodynamic equilibrium (LTE). The structure of 2p-3d transitions has been studied with the help of the statistical superconfiguration opacity code SCO and with the fine-structure atomic physics codes HULLAC and FAC. A new mixed version of the sco code allowing one to treat part of the configurations by detailed calculation based on the Cowan's code RCG has been also used in these comparisons. Special attention was paid to comparisons between theory and experiment concerning the term features which cannot be reproduced by SCO. The differences in the spin-orbit splitting and the statistical (thermal) broadening of the 2p-3d transitions have been investigated as a function of the atomic number Z. It appears that at the conditions of the experiment the role of the term and configuration broadening was different in the three analyzed elements, this broadening being sensitive to the atomic number. Some effects of the temperature gradients and possible non-LTE effects have been studied with the help of the radiative-collisional code SCRIC. The sensitivity of the 2p-3d structures with respect to temperature and density in medium-Z plasmas may be helpful for diagnostics of LTE plasmas especially in future experiments on the Δn=0 absorption in medium-Z plasmas for astrophysical applications.
RESUMEN
The laser integration line (LIL) located at CEA-CESTA is equipped with x-ray plasma diagnostics using different kinds of x-ray components such as filters, mirrors, crystals, detectors, and cameras. The CEA-DAM of Arpajon is currently developing x-ray calibration methods and carrying out absolute calibration of LIL x-ray photodetectors. To guarantee LIL measurements, detectors such as x-ray cameras must be regularly calibrated close to the facility. A new x-ray facility is currently available to perform these absolute x-ray calibrations. This paper presents the x-ray tube based high energy x-ray source delivering x-ray energies ranging from 0.9 to 10 keV by means of an anode barrel. The purpose of this source is mainly to calibrate LIL x-ray cameras but it can also be used to measure x-ray filter transmission of plasma diagnostics. Different x-ray absolute calibrations such as x-ray streak and framing camera yields, x-ray charge-coupled device quantum efficiencies, and x-ray filter transmissions are presented in this paper. A x-ray flat photocathode detector sensitivity calibration recently performed for a CEA Z-pinch facility is also presented.
RESUMEN
This Letter presents first experimental results of the laser imprint reduction in fusion scale plasmas using a low-density foam layer. The experiments were conducted on the LIL facility at the energy level of 12 kJ with millimeter-size plasmas, reproducing the conditions of the initial interaction phase in the direct-drive scheme. The results include the generation of a supersonic ionization wave in the foam and the reduction of the initial laser fluctuations after propagation through 500 mum of foam with limited levels of stimulated Brillouin and Raman scattering. The smoothing mechanisms are analyzed and explained.
RESUMEN
The diagnostic designs for the Laser Megajoule (LMJ) will require components to operate in environments far more severe than those encountered in present facilities. This harsh environment will be induced by fluxes of neutrons, gamma rays, energetic ions, electromagnetic radiations, and, in some cases, debris and shrapnel, at levels several orders of magnitude higher than those experienced today on existing facilities. The lessons learned about the vulnerabilities of present diagnostic parts fielded mainly on OMEGA for many years, have been very useful guide for the design of future LMJ diagnostics. The present and future LMJ diagnostic designs including this vulnerability approach and their main mitigation techniques will be presented together with the main characteristics of the LMJ facility that provide for diagnostic protection.
RESUMEN
Correct modeling of the electron-energy transport is essential for inertial confinement fusion target design. Various transport models have been proposed in order to extend the validity of a hydrodynamical description into weakly collisional regimes, taking into account the nonlocality of the electron transport combined with the effects of self-generated magnetic fields. We have carried out new experiments designed to be highly sensitive to the modeling of the heat flow on the Ligne d'Intégration Laser facility, the prototype of the Laser Megajoule. We show that two-dimensional hydrodynamic simulations correctly reproduce the experimental results only if they include both the nonlocal transport and magnetic fields.
RESUMEN
The concept of X-UV Lamellar Multilayer Amplitude Grating (LMAG) is introduced and a method of fabrication is given. Dynamical and kinematic theories of the diffraction by a LMAG are presented. Different applications of the LMAGs are considered. The first one is the achievement of a narrow bandpass multilayer monochromator for the X-UV domain. The second one is the reduction of specular background in the reflectivity curve of a multilayer structure. The third one is the polychromator system which allows one to split spatially and to perform a spectral sampling of a polychromatic beam. Finally we studied experimentally the behavior of an LMAG in conical mounting.
Asunto(s)
Claritromicina/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium chelonae , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Infección de Heridas/microbiología , Anciano , Humanos , Masculino , Infección de Heridas/tratamiento farmacológicoAsunto(s)
Difosfonatos/efectos adversos , Hipersensibilidad a las Drogas/patología , Prurito/patología , Piel/patología , Corticoesteroides/uso terapéutico , Diagnóstico Diferencial , Hipersensibilidad a las Drogas/tratamiento farmacológico , Hipersensibilidad a las Drogas/etiología , Femenino , Humanos , Hipersensibilidad/complicaciones , Persona de Mediana Edad , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Piel/efectos de los fármacosRESUMEN
Medications, consumed more and more frequently as a result of self-medication or prescribed under medical supervision, have multiple side effects, including dermatological ones. In fact, the latter represent the primary cause of drug intolerance. However, the diagnosis is not always made easily and is based upon standardized norms defined by pharmacology control centers. Fixed pigmented eruptions are the only erythema solely of drug-induced origin. Failure to recognize a drug-induced dermatological manifestation can be fatal if the drug is taken again, as in the case of toxic epidermal necrolysis.