Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4338, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773126

RESUMEN

In interphase nuclei, chromatin forms dense domains of characteristic sizes, but the influence of transcription and histone modifications on domain size is not understood. We present a theoretical model exploring this relationship, considering chromatin-chromatin interactions, histone modifications, and chromatin extrusion. We predict that the size of heterochromatic domains is governed by a balance among the diffusive flux of methylated histones sustaining them and the acetylation reactions in the domains and the process of loop extrusion via supercoiling by RNAPII at their periphery, which contributes to size reduction. Super-resolution and nano-imaging of five distinct cell lines confirm the predictions indicating that the absence of transcription leads to larger heterochromatin domains. Furthermore, the model accurately reproduces the findings regarding how transcription-mediated supercoiling loss can mitigate the impacts of excessive cohesin loading. Our findings shed light on the role of transcription in genome organization, offering insights into chromatin dynamics and potential therapeutic targets.


Asunto(s)
Cromatina , Epigénesis Genética , Heterocromatina , Histonas , Transcripción Genética , Humanos , Histonas/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , Cromatina/metabolismo , Cromatina/genética , ARN Polimerasa II/metabolismo , Cohesinas , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Código de Histonas , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/genética , Acetilación , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Interfase
3.
J Chem Inf Model ; 61(1): 106-114, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33320660

RESUMEN

Double-stranded DNA (dsDNA) has been established as an efficient medium for charge migration, bringing it to the forefront of the field of molecular electronics and biological research. The charge migration rate is controlled by the electronic couplings between the two nucleobases of DNA/RNA. These electronic couplings strongly depend on the intermolecular geometry and orientation. Estimating these electronic couplings for all the possible relative geometries of molecules using the computationally demanding first-principles calculations requires a lot of time and computational resources. In this article, we present a machine learning (ML)-based model to calculate the electronic coupling between any two bases of dsDNA/dsRNA and bypass the computationally expensive first-principles calculations. Using the Coulomb matrix representation which encodes the atomic identities and coordinates of the DNA base pairs to prepare the input dataset, we train a feedforward neural network model. Our neural network (NN) model can predict the electronic couplings between dsDNA base pairs with any structural orientation with a mean absolute error (MAE) of less than 0.014 eV. We further use the NN-predicted electronic coupling values to compute the dsDNA/dsRNA conductance.


Asunto(s)
ADN , Redes Neurales de la Computación , Emparejamiento Base , Electrónica , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA