Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Prog Retin Eye Res ; 100: 101247, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38365085

RESUMEN

Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.


Asunto(s)
Modelos Animales de Enfermedad , Degeneración Macular , Animales , Humanos , Degeneración Macular/genética , Degeneración Macular/fisiopatología , Ratones , Envejecimiento/fisiología , Glaucoma/fisiopatología , Glaucoma/genética , Progresión de la Enfermedad
2.
J Vis Exp ; (184)2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35815968

RESUMEN

Measurements of retinal neuronal light responses are critical to investigating the physiology of the healthy retina, determining pathological changes in retinal diseases, and testing therapeutic interventions. The ex vivo electroretinogram (ERG) allows the quantification of contributions from individual cell types in the isolated retina by addition of specific pharmacological agents and evaluation of tissue-intrinsic changes independently of systemic influences. Retinal light responses can be measured using a specialized ex vivo ERG specimen holder and recording setup, modified from existing patch clamp or microelectrode array equipment. Particularly, the study of ON-bipolar cells, but also of photoreceptors, has been hampered by the slow but progressive decline of light responses in the ex vivo ERG over time. Increased perfusion speed and adjustment of the perfusate temperature improve ex vivo retinal function and maximize response amplitude and stability. The ex vivo ERG uniquely allows the study of individual retinal neuronal cell types. In addition, improvements to maximize response amplitudes and stability allow the investigation of light responses in retina samples from large animals, as well as human donor eyes, making the ex vivo ERG a valuable addition to the repertoire of techniques used to investigate retinal function.


Asunto(s)
Electrorretinografía , Enfermedades de la Retina , Animales , Electrorretinografía/métodos , Humanos , Microelectrodos , Retina/fisiología
3.
Nature ; 606(7913): 351-357, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35545677

RESUMEN

Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases1,2, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.


Asunto(s)
Fototransducción , Rehabilitación Neurológica , Cambios Post Mortem , Retina , Animales , Autopsia , Muerte Celular/efectos de la radiación , Sistema Nervioso Central/efectos de la radiación , Humanos , Fototransducción/efectos de la radiación , Macaca , Ratones , Retina/metabolismo , Retina/efectos de la radiación , Factores de Tiempo
4.
J Biol Chem ; 297(6): 101401, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774799

RESUMEN

The elongated cilia of the outer segment of rod and cone photoreceptor cells can contain concentrations of visual pigments of up to 5 mM. The rod visual pigments, G protein-coupled receptors called rhodopsins, have a propensity to self-aggregate, a property conserved among many G protein-coupled receptors. However, the effect of rhodopsin oligomerization on G protein signaling in native cells is less clear. Here, we address this gap in knowledge by studying rod phototransduction. As the rod outer segment is known to adjust its size proportionally to overexpression or reduction of rhodopsin expression, genetic perturbation of rhodopsin cannot be used to resolve this question. Therefore, we turned to high-throughput screening of a diverse library of 50,000 small molecules and used a novel assay for the detection of rhodopsin dimerization. This screen identified nine small molecules that either disrupted or enhanced rhodopsin dimer contacts in vitro. In a subsequent cell-free binding study, we found that all nine compounds decreased intrinsic fluorescence without affecting the overall UV-visible spectrum of rhodopsin, supporting their actions as allosteric modulators. Furthermore, ex vivo electrophysiological recordings revealed that a disruptive, hit compound #7 significantly slowed down the light response kinetics of intact rods, whereas compound #1, an enhancing hit candidate, did not substantially affect the photoresponse kinetics but did cause a significant reduction in light sensitivity. This study provides a monitoring tool for future investigation of the rhodopsin signaling cascade and reports the discovery of new allosteric modulators of rhodopsin dimerization that can also alter rod photoreceptor physiology.


Asunto(s)
Multimerización de Proteína , Células Fotorreceptoras Retinianas Conos/metabolismo , Rodopsina/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Rodopsina/antagonistas & inhibidores
5.
Front Cell Neurosci ; 15: 662453, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867944

RESUMEN

Sensing changes in the environment is crucial for survival. Animals from invertebrates to vertebrates use both visual and olfactory stimuli to direct survival behaviors including identification of food sources, finding mates, and predator avoidance. In primary sensory neurons there are signal transduction mechanisms that convert chemical or light signals into an electrical response through ligand binding or photoactivation of a receptor, that can be propagated to the olfactory and visual centers of the brain to create a perception of the odor and visual landscapes surrounding us. The fundamental principles of olfactory and phototransduction pathways within vertebrates are somewhat analogous. Signal transduction in both systems takes place in the ciliary sub-compartments of the sensory cells and relies upon the activation of G protein-coupled receptors (GPCRs) to close cyclic nucleotide-gated (CNG) cation channels in photoreceptors to produce a hyperpolarization of the cell, or in olfactory sensory neurons open CNG channels to produce a depolarization. However, while invertebrate phototransduction also involves GPCRs, invertebrate photoreceptors can be either ciliary and/or microvillar with hyperpolarizing and depolarizing responses to light, respectively. Moreover, olfactory transduction in invertebrates may be a mixture of metabotropic G protein and ionotropic signaling pathways. This review will highlight differences of the visual and olfactory transduction mechanisms between vertebrates and invertebrates, focusing on the implications to the gain of the transduction processes, and how they are modulated to allow detection of small changes in odor concentration and light intensity over a wide range of background stimulus levels.

6.
Vis Neurosci ; 37: E008, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33019947

RESUMEN

Based on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently. We review data from preclinical and clinical studies demonstrating a conserved reduction of electrophysiological function in diabetic retinas, as well as evidence for photoreceptor loss. Complementing in vivo studies, we discuss the ex vivo electroretinography technique as a useful method to investigate photoreceptor function in isolated retinas from diabetic animal models. Finally, we consider the possibility that early photoreceptor pathology contributes to the progression of DR, and discuss possible mechanisms of photoreceptor damage in the diabetic retina, such as enhanced production of reactive oxygen species and other inflammatory factors whose detrimental effects may be augmented by phototransduction.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Electrorretinografía , Retina , Células Ganglionares de la Retina
7.
Sci Rep ; 10(1): 16041, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994451

RESUMEN

Rods and cones use intracellular Ca2+ to regulate many functions, including phototransduction and neurotransmission. The Mitochondrial Calcium Uniporter (MCU) complex is thought to be the primary pathway for Ca2+ entry into mitochondria in eukaryotes. We investigate the hypothesis that mitochondrial Ca2+ uptake via MCU influences phototransduction and energy metabolism in photoreceptors using a mcu-/- zebrafish and a rod photoreceptor-specific Mcu-/- mouse. Using genetically encoded Ca2+ sensors to directly examine Ca2+ uptake in zebrafish cone mitochondria, we found that loss of MCU reduces but does not eliminate mitochondrial Ca2+ uptake. Loss of MCU does not lead to photoreceptor degeneration, mildly affects mitochondrial metabolism, and does not alter physiological responses to light, even in the absence of the Na+/Ca2+, K+ exchanger. Our results reveal that MCU is dispensable for vertebrate photoreceptor function, consistent with its low expression and the presence of an alternative pathway for Ca2+ uptake into photoreceptor mitochondria.


Asunto(s)
Canales de Calcio/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Transporte Biológico , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Células Fotorreceptoras/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
8.
Elife ; 92020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32960171

RESUMEN

Neuronal plasticity of the inner retina has been observed in response to photoreceptor degeneration. Typically, this phenomenon has been considered maladaptive and may preclude vision restoration in the blind. However, several recent studies utilizing triggered photoreceptor ablation have shown adaptive responses in bipolar cells expected to support normal vision. Whether such homeostatic plasticity occurs during progressive photoreceptor degenerative disease to help maintain normal visual behavior is unknown. We addressed this issue in an established mouse model of Retinitis Pigmentosa caused by the P23H mutation in rhodopsin. We show robust modulation of the retinal transcriptomic network, reminiscent of the neurodevelopmental state, and potentiation of rod - rod bipolar cell signaling following rod photoreceptor degeneration. Additionally, we found highly sensitive night vision in P23H mice even when more than half of the rod photoreceptors were lost. These results suggest retinal adaptation leading to persistent visual function during photoreceptor degenerative disease.


Asunto(s)
Plasticidad Neuronal/fisiología , Visión Nocturna/fisiología , Retina/fisiología , Retinitis Pigmentosa/fisiopatología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Retina/citología , Retina/metabolismo , Células Bipolares de la Retina/citología , Células Bipolares de la Retina/metabolismo , Retinitis Pigmentosa/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Transcriptoma/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-32784250

RESUMEN

INTRODUCTION: Diabetic retinopathy is a major complication of diabetes recently associated with compromised photoreceptor function. Multiple stressors in diabetes, such as hyperglycemia, oxidative stress and inflammatory factors, have been identified, but systemic effects of diabetes on outer retina function are incompletely understood. We assessed photoreceptor physiology in vivo and in isolated retinas to better understand how alterations in the cellular environment compared with intrinsic cellular/molecular properties of the photoreceptors, affect light signal transduction and transmission in the retina in chronic type 2 diabetes. RESEARCH DESIGN AND METHODS: Photoreceptor function was assessed in BKS.Cs-Dock7m+/+Lepr db/J mice, using homozygotes for Leprdb as a model of type 2 diabetes and heterozygotes as non-diabetic controls. In vivo electroretinogram (ERG) was recorded in dark-adapted mice at both 3 and 6 months of age. For ex vivo ERG, isolated retinas were superfused with oxygenated Ames' media supplemented with 30 mM glucose or mannitol as iso-osmotic control and electrical responses to light stimuli were recorded. RESULTS: We found that both transduction and transmission of light signals by rod photoreceptors were compromised in 6-month-old (n=9-10 eyes from 5 animals, ***p<0.001) but not in 3-month-old diabetic mice in vivo (n=4-8 eyes from 2 to 4 animals). In contrast, rod signaling was similar in isolated retinas from 6-month-old control and diabetic mice under normoglycemic conditions (n=11). Acutely elevated glucose ex vivo increased light-evoked rod photoreceptor responses in control mice (n=11, ***p<0.001), but did not affect light responses in diabetic mice (n=11). CONCLUSIONS: Our data suggest that long-term diabetes does not irreversibly change the ability of rod photoreceptors to transduce and mediate light signals. However, type 2 diabetes appears to induce adaptational changes in the rods that render them less sensitive to increased availability of glucose.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Fototransducción , Ratones , Ratones Endogámicos C57BL , Células Fotorreceptoras Retinianas Bastones
10.
Cell Death Differ ; 27(3): 1067-1085, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31371786

RESUMEN

Photoreceptors are specialized neurons that rely on Ca2+ to regulate phototransduction and neurotransmission. Photoreceptor dysfunction and degeneration occur when intracellular Ca2+ homeostasis is disrupted. Ca2+ homeostasis is maintained partly by mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU), which can influence cytosolic Ca2+ signals, stimulate energy production, and trigger apoptosis. Here we discovered that zebrafish cone photoreceptors express unusually low levels of MCU. We expected that this would be important to prevent mitochondrial Ca2+ overload and consequent cone degeneration. To test this hypothesis, we generated a cone-specific model of MCU overexpression. Surprisingly, we found that cones tolerate MCU overexpression, surviving elevated mitochondrial Ca2+ and disruptions to mitochondrial ultrastructure until late adulthood. We exploited the survival of MCU overexpressing cones to additionally demonstrate that mitochondrial Ca2+ uptake alters the distributions of citric acid cycle intermediates and accelerates recovery kinetics of the cone response to light. Cones adapt to mitochondrial Ca2+ stress by decreasing MICU3, an enhancer of MCU-mediated Ca2+ uptake, and selectively transporting damaged mitochondria away from the ellipsoid toward the synapse. Our findings demonstrate how mitochondrial Ca2+ can influence physiological and metabolic processes in cones and highlight the remarkable ability of cone photoreceptors to adapt to mitochondrial stress.


Asunto(s)
Adaptación Fisiológica , Calcio/metabolismo , Luz , Metaboloma , Mitocondrias/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Estrés Fisiológico , Adaptación Fisiológica/efectos de la radiación , Animales , Canales de Calcio/metabolismo , Citosol/metabolismo , Modelos Animales de Enfermedad , Isocitrato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Cinética , Fototransducción/efectos de la radiación , Mitocondrias/efectos de la radiación , Mitocondrias/ultraestructura , Modelos Biológicos , Fenotipo , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Células Fotorreceptoras Retinianas Conos/ultraestructura , Estrés Fisiológico/efectos de la radiación , Pez Cebra
11.
Science ; 366(6470): 1251-1255, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31806815

RESUMEN

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a subset of cells that participate in image-forming and non-image-forming visual responses. Although both functional and morphological subtypes of ipRGCs have been described in rodents, parallel functional subtypes have not been identified in primate or human retinas. In this study, we used a human organ donor preparation method to measure human ipRGCs' photoresponses. We discovered three functional ipRGC subtypes with distinct sensitivities and responses to light. The response of one ipRGC subtype appeared to depend on exogenous chromophore supply, and this response is conserved in both human and mouse retinas. Rods and cones also provided input to ipRGCs; however, each subtype integrated outer retina light signals in a distinct fashion.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Células Ganglionares de la Retina/fisiología , Animales , Humanos , Luz , Ratones , Estimulación Luminosa , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología
12.
Neuroscience ; 416: 100-108, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31400484

RESUMEN

Two-photon vision arises from the perception of pulsed infrared (IR) laser light as color corresponding to approximately half of the laser wavelength. The physical process responsible for two-photon vision in rods has been delineated and verified experimentally only recently. Here, we sought to determine whether IR light can also be perceived by mammalian cone photoreceptors via a similar activation mechanism. To investigate selectively mammalian cone signaling in mice, we used animals with disabled rod signal transduction. We found that, contrary to the expected progressive sensitivity decrease based on the one-photon cone visual pigment spectral template, the sensitivity of mouse cone photoreceptors decreases only up to 800 nm and then increases at 900 nm and 1000 nm. Similarly, in experiments with the parafoveal region of macaque retinas, we found that the spectral sensitivity of primate cones diverged above the predicted one-photon spectral sensitivity template beyond 800 nm. In both cases, efficient detection of IR light was dependent on minimizing the dispersion of the ultrashort light pulses, indicating a non-linear two-photon activation process. Together, our studies demonstrate that mammalian cones can be activated by near IR light by a nonlinear two-photon excitation. Our results pave the way for the creation of a two-photon IR-based ophthalmoscope for the simultaneous imaging and functional testing of human retinas as a novel tool for the diagnosis and treatment of a wide range of visual disorders.


Asunto(s)
Luz , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Visión Ocular/fisiología , Animales , Ratones Endogámicos C57BL , Fotones , Transducción de Señal/fisiología
13.
FASEB J ; 33(8): 9526-9539, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31121099

RESUMEN

The classic concept that GPCRs function as monomers has been challenged by the emerging evidence of GPCR dimerization and oligomerization. Rhodopsin (Rh) is the only GPCR whose native oligomeric arrangement was revealed by atomic force microscopy demonstrating that Rh exists as a dimer. However, the role of Rh dimerization in retinal physiology is currently unknown. In this study, we identified econazole and sulconazole, two small molecules that disrupt Rh dimer contacts, by implementing a cell-based high-throughput screening assay. Racemic mixtures of identified lead compounds were separated and tested for their stereospecific binding to Rh using UV-visible spectroscopy and intrinsic fluorescence of tryptophan (Trp) 265 after illumination. By following the changes in UV-visible spectra and Trp265 fluorescence in vitro, we found that binding of R-econazole modulates the formation of Meta III and quenches the intrinsic fluorescence of Trp265. In addition, electrophysiological ex vivo recording revealed that R-econazole slows photoresponse kinetics, whereas S-econazole decreased the sensitivity of rods without effecting the kinetics. Thus, this study contributes new methodology to identify compounds that disrupt the dimerization of GPCRs in general and validates the first active compounds that disrupt the Rh dimer specifically.-Getter, T., Gulati, S., Zimmerman, R., Chen, Y., Vinberg, F., Palczewski, K. Stereospecific modulation of dimeric rhodopsin.


Asunto(s)
Rodopsina/química , Rodopsina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Econazol/farmacología , Electrofisiología , Humanos , Imidazoles/farmacología , Immunoblotting , Cinética , Multimerización de Proteína/efectos de los fármacos
14.
Sci Rep ; 8(1): 15864, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367097

RESUMEN

Vision is mediated by two types of photoreceptors: rods, enabling vision in dim light; and cones, which function in bright light. Despite many similarities in the components of their respective phototransduction cascades, rods and cones have distinct sensitivity, response kinetics, and adaptation capacity. Cones are less sensitive and have faster responses than rods. In addition, cones can function over a wide range of light conditions whereas rods saturate in moderately bright light. Calcium plays an important role in regulating phototransduction and light adaptation of rods and cones. Notably, the two dominant Ca2+-feedbacks in rods and cones are driven by the identical calcium-binding proteins: guanylyl cyclase activating proteins 1 and 2 (GCAPs), which upregulate the production of cGMP; and recoverin, which regulates the inactivation of visual pigment. Thus, the mechanisms producing the difference in adaptation capacity between rods and cones have remained poorly understood. Using GCAPs/recoverin-deficient mice, we show that mammalian cones possess another Ca2+-dependent mechanism promoting light adaptation. Surprisingly, we also find that, unlike in mouse rods, a unique Ca2+-independent mechanism contributes to cone light adaptation. Our findings point to two novel adaptation mechanisms in mouse cones that likely contribute to the great adaptation capacity of cones over rods.


Asunto(s)
Adaptación Ocular/fisiología , Calcio/metabolismo , Luz , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Animales , GMP Cíclico/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/deficiencia , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Iones/química , Cinética , Ratones , Ratones Noqueados , Recoverina/deficiencia , Recoverina/genética , Recoverina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Regulación hacia Arriba/efectos de la radiación
15.
Prog Retin Eye Res ; 67: 87-101, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29883715

RESUMEN

Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors. Decades of work have established that the level of calcium in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional and structural changes in photoreceptors when normal extrusion is disrupted.


Asunto(s)
Calcio/metabolismo , Homeostasis/fisiología , Fototransducción/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Adaptación Ocular/fisiología , Humanos
16.
J Biol Chem ; 293(19): 7457-7465, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29549122

RESUMEN

Light adaptation of photoreceptor cells is mediated by Ca2+-dependent mechanisms. In darkness, Ca2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca2+ extrusion via Na+/Ca2+, K+ exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca2+ levels in photoreceptor outer segment because of continuing Ca2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca2+-feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones.


Asunto(s)
Adaptación Ocular , Proteínas Activadoras de la Guanilato-Ciclasa/fisiología , Fototransducción/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Animales , Calcio/metabolismo , GMP Cíclico/biosíntesis , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Intercambiador de Sodio-Calcio/metabolismo
17.
Elife ; 62017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28650316

RESUMEN

Calcium (Ca2+) plays an important role in the function and health of neurons. In vertebrate cone photoreceptors, Ca2+ controls photoresponse sensitivity, kinetics, and light adaptation. Despite the critical role of Ca2+ in supporting the function and survival of cones, the mechanism for its extrusion from cone outer segments is not well understood. Here, we show that the Na+/Ca2+, K+ exchanger NCKX4 is expressed in zebrafish, mouse, and primate cones. Functional analysis of NCKX4-deficient mouse cones revealed that this exchanger is essential for the wide operating range and high temporal resolution of cone-mediated vision. We show that NCKX4 shapes the cone photoresponse together with the cone-specific NCKX2: NCKX4 acts early to limit response amplitude, while NCKX2 acts late to further accelerate response recovery. The regulation of Ca2+ by NCKX4 in cones is a novel mechanism that supports their ability to function as daytime photoreceptors and promotes their survival.


Asunto(s)
Antiportadores/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Intercambiador de Sodio-Calcio/metabolismo , Visión Ocular , Animales , Antiportadores/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Primates , Pez Cebra
18.
Sci Rep ; 6: 32521, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27580676

RESUMEN

Calcium ions (Ca(2+)) modulate the phototransduction cascade of vertebrate cone photoreceptors to tune gain, inactivation, and light adaptation. In darkness, the continuous current entering the cone outer segment through cGMP-gated (CNG) channels is carried in part by Ca(2+), which is then extruded back to the extracellular space. The mechanism of Ca(2+) extrusion from mammalian cones is not understood. The dominant view has been that the cone-specific isoform of the Na(+)/Ca(2+), K(+) exchanger, NCKX2, is responsible for removing Ca(2+) from their outer segments. However, indirect evaluation of cone function in NCKX2-deficient (Nckx2(-/-)) mice by electroretinogram recordings revealed normal photopic b-wave responses. This unexpected result suggested that NCKX2 may not be involved in the Ca(2+) homeostasis of mammalian cones. To address this controversy, we examined the expression of NCKX2 in mouse cones and performed transretinal recordings from Nckx2(-/-) mice to determine the effect of NCKX2 deletion on cone function directly. We found that Nckx2(-/-) cones exhibit compromised phototransduction inactivation, slower response recovery and delayed background adaptation. We conclude that NCKX2 is required for the maintenance of efficient Ca(2+) extrusion from mouse cones. However, surprisingly, Nckx2(-/-) cones adapted normally in steady background light, indicating the existence of additional Ca(2+)-extruding mechanisms in mammalian cones.


Asunto(s)
Calcio/metabolismo , Fototransducción/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Intercambiador de Sodio-Calcio/genética , Adaptación Ocular/genética , Animales , GMP Cíclico/metabolismo , Electrorretinografía , Eliminación de Gen , Expresión Génica , Homeostasis/genética , Transporte Iónico , Ratones , Ratones Noqueados , Células Fotorreceptoras Retinianas Conos/citología , Sodio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
19.
J Gen Physiol ; 146(4): 307-21, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26415569

RESUMEN

Sensory cells adjust their sensitivity to incoming signals, such as odor or light, in response to changes in background stimulation, thereby extending the range over which they operate. For instance, rod photoreceptors are extremely sensitive in darkness, so that they are able to detect individual photons, but remain responsive to visual stimuli under conditions of bright ambient light, which would be expected to saturate their response given the high gain of the rod transduction cascade in darkness. These photoreceptors regulate their sensitivity to light rapidly and reversibly in response to changes in ambient illumination, thereby avoiding saturation. Calcium ions (Ca2+) play a major role in mediating the rapid, subsecond adaptation to light, and the Ca2+-binding proteins GCAP1 and GCAP2 (or guanylyl cyclase-activating proteins [GCAPs]) have been identified as important mediators of the photoreceptor response to changes in intracellular Ca2+. However, mouse rods lacking both GCAP1 and GCAP2 (GCAP-/-) still show substantial light adaptation. Here, we determined the Ca2+ dependency of this residual light adaptation and, by combining pharmacological, genetic, and electrophysiological tools, showed that an unknown Ca2+-dependent mechanism contributes to light adaptation in GCAP-/- mouse rods. We found that mimicking the light-induced decrease in intracellular [Ca2+] accelerated recovery of the response to visual stimuli and caused a fourfold decrease of sensitivity in GCAP-/- rods. About half of this Ca2+-dependent regulation of sensitivity could be attributed to the recoverin-mediated pathway, whereas half of it was caused by the unknown mechanism. Furthermore, our data demonstrate that the feedback mechanisms regulating the sensitivity of mammalian rods on the second and subsecond time scales are all Ca2+ dependent and that, unlike salamander rods, Ca2+-independent background-induced acceleration of flash response kinetics is rather weak in mouse rods.


Asunto(s)
Señalización del Calcio , Retroalimentación Fisiológica , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Células Cultivadas , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Ratones , Ratones Endogámicos C57BL
20.
Hum Mol Genet ; 24(20): 5915-29, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26246500

RESUMEN

Mutations that affect calcium homeostasis (Ca(2+)) in rod photoreceptors are linked to retinal degeneration and visual disorders such as retinitis pigmentosa and congenital stationary night blindness (CSNB). It is thought that the concentration of Ca(2+) in rod outer segments is controlled by a dynamic balance between influx via cGMP-gated (CNG) channels and extrusion via Na(+)/Ca(2+), K(+) exchangers (NCKX1). The extrusion-driven lowering of rod [Ca(2+)]i following light exposure controls their light adaptation and response termination. Mutant NCKX1 has been linked to autosomal-recessive stationary night blindness. However, whether NCKX1 contributes to light adaptation has not been directly tested and the mechanisms by which human NCKX1 mutations cause night blindness are not understood. Here, we report that the deletion of NCKX1 in mice results in malformed outer segment disks, suppressed expression and function of rod CNG channels and a subsequent 100-fold reduction in rod responses, while preserving normal cone responses. The compensating loss of CNG channel function in the absence of NCKX1-mediated Ca(2+) extrusion may prevent toxic Ca(2+) buildup and provides an explanation for the stationary nature of the associated disorder in humans. Surprisingly, the lack of NCKX1 did not compromise rod background light adaptation, suggesting additional Ca(2+)-extruding mechanisms exist in these cells.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Miopía/metabolismo , Ceguera Nocturna/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Intercambiador de Sodio-Calcio/genética , Animales , Calcio/metabolismo , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/fisiopatología , Eliminación de Gen , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Ratones , Miopía/genética , Miopía/fisiopatología , Ceguera Nocturna/genética , Ceguera Nocturna/fisiopatología , Segmento Externo de la Célula en Bastón/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA