Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biochem J ; 481(11): 683-715, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38804971

RESUMEN

Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.


Asunto(s)
Replicación del ADN , ADN Mitocondrial , Enfermedades Mitocondriales , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Eliminación de Secuencia , Genoma Mitocondrial , Mitocondrias/genética , Mitocondrias/metabolismo , Reparación del ADN
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167131, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521420

RESUMEN

Mitochondrial DNA (mtDNA) deletions which clonally expand in skeletal muscle of patients with mtDNA maintenance disorders, impair mitochondrial oxidative phosphorylation dysfunction. Previously we have shown that these mtDNA deletions arise and accumulate in perinuclear mitochondria causing localised mitochondrial dysfunction before spreading through the muscle fibre. We believe that mito-nuclear signalling is a key contributor in the accumulation and spread of mtDNA deletions, and that knowledge of how muscle fibres respond to mitochondrial dysfunction is key to our understanding of disease mechanisms. To understand the contribution of mito-nuclear signalling to the spread of mitochondrial dysfunction, we use imaging mass cytometry. We characterise the levels of mitochondrial Oxidative Phosphorylation proteins alongside a mitochondrial mass marker, in a cohort of patients with mtDNA maintenance disorders. Our expanded panel included protein markers of key signalling pathways, allowing us to investigate cellular responses to different combinations of oxidative phosphorylation dysfunction and ragged red fibres. We find combined Complex I and IV deficiency to be most common. Interestingly, in fibres deficient for one or more complexes, the remaining complexes are often upregulated beyond the increase of mitochondrial mass typically observed in ragged red fibres. We further find that oxidative phosphorylation deficient fibres exhibit an increase in the abundance of proteins involved in proteostasis, e.g. HSP60 and LONP1, and regulation of mitochondrial metabolism (including oxidative phosphorylation and proteolysis, e.g. PHB1). Our analysis suggests that the cellular response to mitochondrial dysfunction changes depending on the combination of deficient oxidative phosphorylation complexes in each fibre.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Fosforilación Oxidativa , Prohibitinas , Humanos , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Masculino , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/genética , Femenino , Adulto , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Transducción de Señal , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
3.
Biochem J ; 480(21): 1767-1789, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37965929

RESUMEN

Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.


Asunto(s)
Miopatías Mitocondriales , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Mitocondrias/metabolismo , Recambio Mitocondrial , Biología
4.
J Neuromuscul Dis ; 10(6): 1111-1126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638448

RESUMEN

BACKGROUND: Myotonic dystrophy type 1 (DM1) is a dominant autosomal neuromuscular disorder caused by the inheritance of a CTG triplet repeat expansion in the Dystrophia Myotonica Protein Kinase (DMPK) gene. At present, no cure currently exists for DM1 disease. OBJECTIVE: This study investigates the effects of 12-week resistance exercise training on mitochondrial oxidative phosphorylation in skeletal muscle in a cohort of DM1 patients (n = 11, men) in comparison to control muscle with normal oxidative phosphorylation. METHODS: Immunofluorescence was used to assess protein levels of key respiratory chain subunits of complex I (CI) and complex IV (CIV), and markers of mitochondrial mass and cell membrane in individual myofibres sampled from muscle biopsies. Using control's skeletal muscle fibers population, we classified each patient's fibers as having normal, low or high levels of CI and CIV and compared the proportions of fibers before and after exercise training. The significance of changes observed between pre- and post-exercise within patients was estimated using a permutation test. RESULTS: At baseline, DM1 patients present with significantly decreased mitochondrial mass, and isolated or combined CI and CIV deficiency. After resistance exercise training, in most patients a significant increase in mitochondrial mass was observed, and all patients showed a significant increase in CI and/or CIV protein levels. Moreover, improvements in mitochondrial mass were correlated with the one-repetition maximum strength evaluation. CONCLUSIONS: Remarkably, 12-week resistance exercise training is sufficient to partially rescue mitochondrial dysfunction in DM1 patients, suggesting that the response to exercise is in part be due to changes in mitochondria.


Asunto(s)
Distrofia Miotónica , Entrenamiento de Fuerza , Masculino , Humanos , Distrofia Miotónica/genética , Músculo Esquelético/patología , Ejercicio Físico/fisiología , Mitocondrias/metabolismo
5.
NPJ Parkinsons Dis ; 9(1): 120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553379

RESUMEN

Mitochondrial dysfunction has been suggested to contribute to Parkinson's disease pathogenesis, though an understanding of the extent or exact mechanism of this contribution remains elusive. This has been complicated by challenging nature of pathway-based analysis and an inability simultaneously study multiple related proteins within human brain tissue. We used imaging mass cytometry (IMC) to overcome these challenges, measuring multiple protein targets, whilst retaining the spatial relationship between targets in post-mortem midbrain sections. We used IMC to simultaneously interrogate subunits of the mitochondrial oxidative phosphorylation complexes, and several key signalling pathways important for mitochondrial homoeostasis, in a large cohort of PD patient and control cases. We revealed a generalised and synergistic reduction in mitochondrial quality control proteins in dopaminergic neurons from Parkinson's patients. Further, protein-protein abundance relationships appeared significantly different between PD and disease control tissue. Our data showed a significant reduction in the abundance of PINK1, Parkin and phosphorylated ubiquitinSer65, integral to the mitophagy machinery; two mitochondrial chaperones, HSP60 and PHB1; and regulators of mitochondrial protein synthesis and the unfolded protein response, SIRT3 and TFAM. Further, SIRT3 and PINK1 did not show an adaptive response to an ATP synthase defect in the Parkinson's neurons. We also observed intraneuronal aggregates of phosphorylated ubiquitinSer65, alongside increased abundance of mitochondrial proteases, LONP1 and HTRA2, within the Parkinson's neurons with Lewy body pathology, compared to those without. Taken together, these findings suggest an inability to turnover mitochondria and maintain mitochondrial proteostasis in Parkinson's neurons. This may exacerbate the impact of oxidative phosphorylation defects and ageing related oxidative stress, leading to neuronal degeneration. Our data also suggest that that Lewy pathology may affect mitochondrial quality control regulation through the disturbance of mitophagy and intramitochondrial proteostasis.

6.
Methods Mol Biol ; 2615: 443-463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807808

RESUMEN

Mitochondrial DNA (mtDNA) deletions underpin mitochondrial dysfunction in human tissues in aging and disease. The multicopy nature of the mitochondrial genome means these mtDNA deletions can occur in varying mutation loads. At low levels, these deletions have no impact, but once the proportion of molecules harbouring a deletion exceeds a threshold level, then dysfunction occurs. The location of the breakpoints and the size of the deletion impact upon the mutation threshold required to cause deficiency of an oxidative phosphorylation complex, and this varies for each of the different complexes. Furthermore, mutation load and deletion species can vary between adjacent cells in a tissue, with a mosaic pattern of mitochondrial dysfunction observed. As such, it is often important for understanding human aging and disease to be able to characterise the mutation load, breakpoints and size of deletion(s) from a single human cell. Here, we detail protocols for laser micro-dissection and single cell lysis from tissues, and the subsequent analysis of deletion size, breakpoints and mutation load using long-range PCR, mtDNA sequencing and real-time PCR, respectively.


Asunto(s)
Envejecimiento , ADN Mitocondrial , Humanos , ADN Mitocondrial/genética , Envejecimiento/genética , Mitocondrias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de la Célula Individual , Eliminación de Secuencia
8.
Trials ; 23(1): 789, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127727

RESUMEN

BACKGROUND: Mitochondrial disease is a heterogenous group of rare, complex neurometabolic disorders. Despite their individual rarity, collectively mitochondrial diseases represent the most common cause of inherited metabolic disorders in the UK; they affect 1 in every 4300 individuals, up to 15,000 adults (and a similar number of children) in the UK. Mitochondrial disease manifests multisystem and isolated organ involvement, commonly affecting those tissues with high energy demands, such as skeletal muscle. Myopathy manifesting as fatigue, muscle weakness and exercise intolerance is common and debilitating in patients with mitochondrial disease. Currently, there are no effective licensed treatments and consequently, there is an urgent clinical need to find an effective drug therapy. AIM: To investigate the efficacy of 12-week treatment with acipimox on the adenosine triphosphate (ATP) content of skeletal muscle in patients with mitochondrial disease and myopathy. METHODS: AIMM is a single-centre, double blind, placebo-controlled, adaptive designed trial, evaluating the efficacy of 12 weeks' administration of acipimox on skeletal muscle ATP content in patients with mitochondrial myopathy. Eligible patients will receive the trial investigational medicinal product (IMP), either acipimox or matched placebo. Participants will also be prescribed low dose aspirin as a non-investigational medical product (nIMP) in order to protect the blinding of the treatment assignment. Eighty to 120 participants will be recruited as required, with an interim analysis for sample size re-estimation and futility assessment being undertaken once the primary outcome for 50 participants has been obtained. Randomisation will be on a 1:1 basis, stratified by Fatigue Impact Scale (FIS) (dichotomised as < 40, ≥ 40). Participants will take part in the trial for up to 20 weeks, from screening visits through to follow-up at 16 weeks post randomisation. The primary outcome of change in ATP content in skeletal muscle and secondary outcomes relating to quality of life, perceived fatigue, disease burden, limb function, balance and walking, skeletal muscle analysis and symptom-limited cardiopulmonary fitness (optional) will be assessed between baseline and 12 weeks. DISCUSSION: The AIMM trial will investigate the effect of acipimox on modulating muscle ATP content and whether it can be repurposed as a new treatment for mitochondrial disease with myopathy. TRIAL REGISTRATION: EudraCT2018-002721-29 . Registered on 24 December 2018, ISRCTN 12895613. Registered on 03 January 2019, https://www.isrctn.com/search?q=aimm.


Asunto(s)
Miopatías Mitocondriales , Enfermedades Musculares , Adulto , Niño , Humanos , Adenosina Trifosfato , Aspirina/uso terapéutico , Fatiga , Miopatías Mitocondriales/diagnóstico , Miopatías Mitocondriales/tratamiento farmacológico , Pirazinas , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
AIDS ; 36(14): 1927-1934, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35848592

RESUMEN

OBJECTIVE: To quantify mitochondrial function in skeletal muscle of people treated with contemporary antiretroviral therapy. DESIGN: Cross-sectional observational study. METHODS: Quantitative multiplex immunofluorescence was performed to determine mitochondrial mass and respiratory chain complex abundance in individual myofibres from tibialis anterior biopsies. Individual myofibres were captured by laser microdissection and mitochondrial DNA (mtDNA) content and large-scale deletions were measured by real-time PCR. RESULTS: Forty-five antiretroviral therapy (ART)-treated people with HIV (PWH, mean age 58 years, mean duration of ART 125 months) were compared with 15 HIV negative age-matched controls. Mitochondrial complex I (CI) deficiency was observed at higher proportional levels in PWH than negative controls ( P = 0.008). Myofibre mitochondrial mass did not differ by HIV status. No ART class was significantly associated with mitochondrial deficiency, including prior exposure to historical NRTIs (nucleoside analogue reverse transcriptase inhibitors) associated with systemic mitochondrial toxicity. To exclude an effect of untreated HIV, we also studied skeletal muscle from 13 ART-naive PWH (mean age 37). These showed negligible CI defects, as well as comparable myofibre mitochondrial mass to ART-treated PWH. Most CI-deficient myofibres contained mtDNA deletions. No mtDNA depletion was detected. CONCLUSION: Here, we show that PWH treated with contemporary ART have mitochondrial dysfunction in skeletal muscle, exceeding that expected due to age alone. Surprisingly, this was not mediated by prior exposure to mitochondrially toxic NRTIs, suggesting novel mechanisms of mitochondrial dysfunction in contemporary ART-treated PWH. These findings are relevant for better understanding successful ageing in PWH.


Asunto(s)
Infecciones por VIH , Humanos , Persona de Mediana Edad , Adulto , Infecciones por VIH/complicaciones , Estudios Transversales , Análisis de la Célula Individual , ADN Mitocondrial , Mitocondrias , Músculo Esquelético
10.
Sci Rep ; 12(1): 6660, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459777

RESUMEN

Advances in multiplex immunofluorescence (mIF) and digital image analysis has enabled simultaneous assessment of protein defects in electron transport chain components. However, current manual methodology is time consuming and labour intensive. Therefore, we developed an automated high-throughput mIF workflow for quantitative single-cell level assessment of formalin fixed paraffin embedded tissue (FFPE), leveraging tyramide signal amplification on a Ventana Ultra platform coupled with automated multispectral imaging on a Vectra 3 platform. Utilising this protocol, we assessed the mitochondrial oxidative phosphorylation (OXPHOS) protein alterations in a cohort of benign and malignant prostate samples. Mitochondrial OXPHOS plays a critical role in cell metabolism, and OXPHOS perturbation is implicated in carcinogenesis. Marked inter-patient, intra-patient and spatial cellular heterogeneity in OXPHOS protein abundance was observed. We noted frequent Complex IV loss in benign prostate tissue and Complex I loss in age matched prostate cancer tissues. Malignant regions within prostate cancer samples more frequently contained cells with low Complex I & IV and high mitochondrial mass in comparison to benign-adjacent regions. This methodology can now be applied more widely to study the frequency and distribution of OXPHOS alterations in formalin-fixed tissues, and their impact on long-term clinical outcomes.


Asunto(s)
Técnica del Anticuerpo Fluorescente , Próstata , Neoplasias de la Próstata , Complejo IV de Transporte de Electrones , Técnica del Anticuerpo Fluorescente/métodos , Formaldehído , Humanos , Masculino , Fosforilación Oxidativa , Adhesión en Parafina , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Fijación del Tejido
11.
Anal Bioanal Chem ; 414(18): 5483-5492, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35233697

RESUMEN

Intracellular heterogeneity contributes significantly to cellular physiology and, in a number of debilitating diseases, cellular pathophysiology. This is greatly influenced by distinct organelle populations and to understand the aetiology of disease, it is important to have tools able to isolate and differentially analyse organelles from precise location within tissues. Here, we report the development of a subcellular biopsy technology that facilitates the isolation of organelles, such as mitochondria, from human tissue. We compared the subcellular biopsy technology to laser capture microdissection (LCM) that is the state-of-the-art technique for the isolation of cells from their surrounding tissues. We demonstrate an operational limit of  >20 µm for LCM and then, for the first time in human tissue, show that subcellular biopsy can be used to isolate mitochondria beyond this limit.


Asunto(s)
Genómica , Biopsia , Humanos , Captura por Microdisección con Láser/métodos
12.
Cell Metab ; 34(2): 197-208.e5, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35030325

RESUMEN

Mitophagy is a quality control mechanism that eliminates damaged mitochondria, yet its significance in mammalian pathophysiology and aging has remained unclear. Here, we report that mitophagy contributes to mitochondrial dysfunction in skeletal muscle of aged mice and human patients. The early disease stage is characterized by muscle fibers with central nuclei, with enhanced mitophagy around these nuclei. However, progressive mitochondrial dysfunction halts mitophagy and disrupts lysosomal homeostasis. Interestingly, activated or halted mitophagy occur in a mosaic manner even in adjacent muscle fibers, indicating cell-autonomous regulation. Rapamycin restores mitochondrial turnover, indicating mTOR-dependence of mitochondrial recycling in advanced disease stage. Our evidence suggests that (1) mitophagy is a hallmark of age-related mitochondrial pathology in mammalian muscle, (2) mosaic halting of mitophagy is a mechanism explaining mosaic respiratory chain deficiency and accumulation of pathogenic mtDNA variants in adult-onset mitochondrial diseases and normal aging, and (3) augmenting mitophagy is a promising therapeutic approach for muscle mitochondrial dysfunction.


Asunto(s)
Enfermedades Mitocondriales , Mitofagia , Animales , Humanos , Mamíferos , Ratones , Mitocondrias , Enfermedades Mitocondriales/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo
13.
Mov Disord ; 37(2): 302-314, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34779538

RESUMEN

BACKGROUND: Mitochondrial dysfunction within neurons, particularly those of the substantia nigra, has been well characterized in Parkinson's disease and is considered to be related to the pathogenesis of this disorder. Dysfunction within this important organelle has been suggested to impair neuronal communication and survival; however, the reliance of astrocytes on mitochondria and the impact of their dysfunction on this essential cell type are less well characterized. OBJECTIVE: This study aimed to uncover whether astrocytes harbor oxidative phosphorylation (OXPHOS) deficiencies in Parkinson's disease and whether these deficiencies are more likely to occur in astrocytes closely associated with neurons or those more distant from them. METHODS: Postmortem human brain sections from patients with Parkinson's disease were subjected to imaging mass cytometry for individual astrocyte analysis of key OXPHOS proteins across all five complexes. RESULTS: We show the variability in the astrocytic expression of mitochondrial proteins between individuals. In addition, we found that there is evidence of deficiencies in respiratory chain subunit expression within these important glia and changes, particularly in mitochondrial mass, associated with Parkinson's disease and that are not simply a consequence of advancing age. CONCLUSION: Our data show that astrocytes, like neurons, are susceptible to mitochondrial defects and that these could have an impact on their reactivity and ability to support neurons in Parkinson's disease.


Asunto(s)
Astrocitos , Enfermedad de Parkinson , Astrocitos/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo
14.
Cell Rep ; 36(6): 109509, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380033

RESUMEN

The brain's ability to process complex information relies on the constant supply of energy through aerobic respiration by mitochondria. Neurons contain three anatomically distinct compartments-the soma, dendrites, and projecting axons-which have different energetic and biochemical requirements, as well as different mitochondrial morphologies in cultured systems. In this study, we apply quantitative three-dimensional electron microscopy to map mitochondrial network morphology and complexity in the mouse brain. We examine somatic, dendritic, and axonal mitochondria in the dentate gyrus and cornu ammonis 1 (CA1) of the mouse hippocampus, two subregions with distinct principal cell types and functions. We also establish compartment-specific differences in mitochondrial morphology across these cell types between young and old mice, highlighting differences in age-related morphological recalibrations. Overall, these data define the nature of the neuronal mitochondrial network in the mouse hippocampus, providing a foundation to examine the role of mitochondrial morpho-function in the aging brain.


Asunto(s)
Envejecimiento/fisiología , Axones/fisiología , Dendritas/fisiología , Hipocampo/fisiología , Mitocondrias/metabolismo , Neuronas/citología , Animales , Región CA1 Hipocampal/fisiología , Giro Dentado/fisiología , Femenino , Imagenología Tridimensional , Ratones Endogámicos C57BL , Fracciones Subcelulares/metabolismo
15.
Hum Mol Genet ; 30(R2): R245-R253, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34169319

RESUMEN

Mitochondrial DNA (mtDNA) disorders are recognized as one of the most common causes of inherited metabolic disorders. The mitochondrial genome occurs in multiple copies resulting in both homoplasmic and heteroplasmic pathogenic mtDNA variants. A biochemical defect arises when the pathogenic variant level reaches a threshold, which differs between variants. Moreover, variants can segregate, clonally expand, or be lost from cellular populations resulting in a dynamic and tissue-specific mosaic pattern of oxidative deficiency. MtDNA is maternally inherited but transmission patterns of heteroplasmic pathogenic variants are complex. During oogenesis, a mitochondrial bottleneck results in offspring with widely differing variant levels to their mother, whilst highly deleterious variants, such as deletions, are not transmitted. Complemented by a complex interplay between mitochondrial and nuclear genomes, these peculiar genetics produce marked phenotypic variation, posing challenges to the diagnosis and clinical management of patients. Novel therapeutic compounds and several genetic therapies are currently under investigation, but proven disease-modifying therapies remain elusive. Women who carry pathogenic mtDNA variants require bespoke genetic counselling to determine their reproductive options. Recent advances in in vitro fertilization techniques, have greatly improved reproductive choices, but are not without their challenges. Since the first pathogenic mtDNA variants were identified over 30 years ago, there has been remarkable progress in our understanding of these diseases. However, many questions remain unanswered and future studies are required to investigate the mechanisms of disease progression and to identify new disease-specific therapeutic targets.


Asunto(s)
ADN Mitocondrial , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Enfermedades Mitocondriales/genética , Manejo de la Enfermedad , Herencia Extracromosómica , Humanos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/terapia
16.
NPJ Parkinsons Dis ; 7(1): 39, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980828

RESUMEN

Here we report the application of a mass spectrometry-based technology, imaging mass cytometry, to perform in-depth proteomic profiling of mitochondrial complexes in single neurons, using metal-conjugated antibodies to label post-mortem human midbrain sections. Mitochondrial dysfunction, particularly deficiency in complex I has previously been associated with the degeneration of dopaminergic neurons in Parkinson's disease. To further our understanding of the nature of this dysfunction, and to identify Parkinson's disease specific changes, we validated a panel of antibodies targeting subunits of all five mitochondrial oxidative phosphorylation complexes in dopaminergic neurons from Parkinson's disease, mitochondrial disease, and control cases. Detailed analysis of the expression profile of these proteins, highlighted heterogeneity between individuals. There is a widespread decrease in expression of all complexes in Parkinson's neurons, although more severe in mitochondrial disease neurons, however, the combination of affected complexes varies between the two groups. We also provide evidence of a potential neuronal response to mitochondrial dysfunction through a compensatory increase in mitochondrial mass. This study highlights the use of imaging mass cytometry in the assessment and analysis of expression of oxidative phosphorylation proteins, revealing the complexity of deficiencies of these proteins within individual neurons which may contribute to and drive neurodegeneration in Parkinson's disease.

17.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266331

RESUMEN

Depot specific expansion of orbital-adipose-tissue (OAT) in Graves' Orbitopathy (GO) is associated with lipid metabolism signaling defects. We hypothesize that the unique adipocyte biology of OAT facilitates its expansion in GO. A comprehensive comparison of OAT and white-adipose-tissue (WAT) was performed by light/electron-microscopy, lipidomic and transcriptional analysis using ex vivo WAT, healthy OAT (OAT-H) and OAT from GO (OAT-GO). OAT-H/OAT-GO have a single lipid-vacuole and low mitochondrial number. Lower lipolytic activity and smaller adipocytes of OAT-H/OAT-GO, accompanied by similar essential linoleic fatty acid (FA) and (low) FA synthesis to WAT, revealed a hyperplastic OAT expansion through external FA-uptake via abundant SLC27A6 (FA-transporter) expression. Mitochondrial dysfunction of OAT in GO was apparent, as evidenced by the increased mRNA expression of uncoupling protein 1 (UCP1) and mitofusin-2 (MFN2) in OAT-GO compared to OAT-H. Transcriptional profiles of OAT-H revealed high expression of Iroquois homeobox-family (IRX-3&5), and low expression in HOX-family/TBX5 (essential for WAT/BAT (brown-adipose-tissue)/BRITE (BRown-in-whITE) development). We demonstrated unique features of OAT not presented in either WAT or BAT/BRITE. This study reveals that the pathologically enhanced FA-uptake driven hyperplastic expansion of OAT in GO is associated with a depot specific mechanism (the SLC27A6 FA-transporter) and mitochondrial dysfunction. We uncovered that OAT functions as a distinctive fat depot, providing novel insights into adipocyte biology and the pathological development of OAT expansion in GO.


Asunto(s)
Tejido Adiposo/patología , Ojo/patología , Oftalmopatía de Graves/patología , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad , Biología Computacional/métodos , Ojo/metabolismo , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Oftalmopatía de Graves/etiología , Oftalmopatía de Graves/metabolismo , Metabolismo de los Lípidos , Lipidómica , Transcriptoma
18.
Sci Rep ; 10(1): 15336, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948797

RESUMEN

The study of skeletal muscle continues to support the accurate diagnosis of mitochondrial disease and remains important in delineating molecular disease mechanisms. The heterogeneous expression of oxidative phosphorylation proteins and resulting respiratory deficiency are both characteristic findings in mitochondrial disease, hence the rigorous assessment of these at a single cell level is incredibly powerful. Currently, the number of proteins that can be assessed in individual fibres from a single section by immunohistochemistry is limited but imaging mass cytometry (IMC) enables the quantification of further, discrete proteins in individual cells. We have developed a novel workflow and bespoke analysis for applying IMC in skeletal muscle biopsies from patients with genetically-characterised mitochondrial disease, investigating the distribution of nine mitochondrial proteins in thousands of single muscle fibres. Using a semi-automated analysis pipeline, we demonstrate the accurate quantification of protein levels using IMC, providing an accurate measure of oxidative phosphorylation deficiency for complexes I-V at the single cell level. We demonstrate signatures of oxidative phosphorylation deficiency for common mtDNA variants and nuclear-encoded complex I variants and a compensatory upregulation of unaffected oxidative phosphorylation components. This technique can now be universally applied to evaluate a wide range of skeletal muscle disorders and protein targets.


Asunto(s)
Citometría de Imagen/métodos , Mitocondrias Musculares/metabolismo , Enfermedades Mitocondriales/patología , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/patología , ADN Mitocondrial/genética , Distrofina/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Mitocondrias Musculares/patología , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Fosforilación Oxidativa , ARN de Transferencia/genética , Reproducibilidad de los Resultados , Programas Informáticos , Interfaz Usuario-Computador , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
19.
Exp Gerontol ; 138: 110997, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32554091

RESUMEN

INTRODUCTION: There has been little work on the relationship between sarcopenia, a progressive skeletal muscle disorder, and age-related neurodegenerative diseases such as Parkinson's disease (PD). OBJECTIVES: We aimed to determine: 1) the feasibility of characterizing skeletal muscle across a range of cognitive function in PD; 2) if muscle mitochondrial respiratory chain (MRC) function and content are preserved in older adults with PD. METHODS: Sarcopenia was defined using handgrip strength, chair rise and bioimpedance analysis. MRC function was assessed using phosphorous magnetic resonance spectroscopy (MRS) by estimating τ1/2 PCr (s) (phosphocreatine half-time recovery) in the calf muscles following a bout of aerobic exercise. Biopsy of the vastus lateralis muscle was performed, and MRC content assessed by fluorescent immunohistochemistry for porin and components of MRC Complexes I and IV. RESULTS: Nine participants (78% male; mean age 79.9; PD duration 3.3 years) were recruited. Four had cognitive impairment. Six participants had probable sarcopenia. Eight participants completed MRS and had mean (SD) τ1/2 PCr of 37.8 (7.6) seconds, suggesting preserved mitochondrial function. Muscle biopsies were obtained in all and the procedure was well tolerated. Porin Z-score, a proxy for mitochondrial mass, was lower than expected compared to controls (0-89% of fibres with low porin). There was a small amount of Complex I (0.16-4.59%) and Complex IV (0-3.79%) deficiency. CONCLUSIONS: Detailed phenotyping, muscle biopsy and imaging was feasible and acceptable across a spectrum of cognitive function in PD. Sarcopenia was relatively common and may be associated with lower mitochondrial mass and low levels of MRC deficiency.


Asunto(s)
Enfermedad de Parkinson , Sarcopenia , Anciano , Anciano de 80 o más Años , Cognición , Transporte de Electrón , Estudios de Factibilidad , Femenino , Fuerza de la Mano , Humanos , Masculino , Músculo Esquelético/metabolismo , Enfermedad de Parkinson/metabolismo , Sarcopenia/patología
20.
Open Biol ; 10(5): 200061, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32428418

RESUMEN

How mitochondrial DNA mutations clonally expand in an individual cell is a question that has perplexed mitochondrial biologists for decades. A growing body of literature indicates that mitochondrial DNA mutations play a major role in ageing, metabolic diseases, neurodegenerative diseases, neuromuscular disorders and cancers. Importantly, this process of clonal expansion occurs for both inherited and somatic mitochondrial DNA mutations. To complicate matters further there are fundamental differences between mitochondrial DNA point mutations and deletions, and between mitotic and post-mitotic cells, that impact this pathogenic process. These differences, along with the challenges of investigating a longitudinal process occurring over decades in humans, have so far hindered progress towards understanding clonal expansion. Here we summarize our current understanding of the clonal expansion of mitochondrial DNA mutations in different tissues and highlight key unanswered questions. We then discuss the various existing biological models, along with their advantages and disadvantages. Finally, we explore what has been achieved with mathematical modelling so far and suggest future work to advance this important area of research.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Mutación , Animales , Humanos , Mitosis , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA