Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8013): 830-836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720068

RESUMEN

Anthropogenic change is contributing to the rise in emerging infectious diseases, which are significantly correlated with socioeconomic, environmental and ecological factors1. Studies have shown that infectious disease risk is modified by changes to biodiversity2-6, climate change7-11, chemical pollution12-14, landscape transformations15-20 and species introductions21. However, it remains unclear which global change drivers most increase disease and under what contexts. Here we amassed a dataset from the literature that contains 2,938 observations of infectious disease responses to global change drivers across 1,497 host-parasite combinations, including plant, animal and human hosts. We found that biodiversity loss, chemical pollution, climate change and introduced species are associated with increases in disease-related end points or harm, whereas urbanization is associated with decreases in disease end points. Natural biodiversity gradients, deforestation and forest fragmentation are comparatively unimportant or idiosyncratic as drivers of disease. Overall, these results are consistent across human and non-human diseases. Nevertheless, context-dependent effects of the global change drivers on disease were found to be common. The findings uncovered by this meta-analysis should help target disease management and surveillance efforts towards global change drivers that increase disease. Specifically, reducing greenhouse gas emissions, managing ecosystem health, and preventing biological invasions and biodiversity loss could help to reduce the burden of plant, animal and human diseases, especially when coupled with improvements to social and economic determinants of health.


Asunto(s)
Biodiversidad , Cambio Climático , Enfermedades Transmisibles , Contaminación Ambiental , Especies Introducidas , Animales , Humanos , Efectos Antropogénicos , Cambio Climático/estadística & datos numéricos , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/etiología , Conservación de los Recursos Naturales/tendencias , Conjuntos de Datos como Asunto , Contaminación Ambiental/efectos adversos , Agricultura Forestal , Bosques , Especies Introducidas/estadística & datos numéricos , Enfermedades de las Plantas/etiología , Medición de Riesgo , Urbanización
2.
Microb Ecol ; 85(3): 998-1012, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35802172

RESUMEN

Brownfields are unused sites that contain hazardous substances due to previous commercial or industrial use. The sites are inhospitable for many organisms, but some fungi and microbes can tolerate and thrive in the nutrient-depleted and contaminated soils. However, few studies have characterized the impacts of long-term contamination on soil microbiome composition and diversity at brownfields. This study focuses on an urban brownfield-a former rail yard in Los Angeles that is contaminated with heavy metals, volatile organic compounds, and petroleum-derived pollutants. We anticipate that heavy metals and organic pollutants will shape soil microbiome diversity and that several candidate fungi and bacteria will be tolerant to the contaminants. We sequence three gene markers (16S ribosomal RNA, 18S ribosomal RNA, and the fungal internal transcribed spacer (FITS)) in 55 soil samples collected at five depths to (1) profile the composition of the soil microbiome across depths; (2) determine the extent to which hazardous chemicals predict microbiome variation; and (3) identify microbial taxonomic groups that may metabolize these contaminants. Detected contaminants in the samples included heavy metals, petroleum hydrocarbons, polycyclic aromatic hydrocarbons, and volatile organic compounds. Bacterial, eukaryotic, and fungal communities all varied with depth and with concentrations of arsenic, chromium, cobalt, and lead. 18S rRNA microbiome richness and fungal richness were positively correlated with lead and cobalt levels, respectively. Furthermore, bacterial Paenibacillus and Iamia, eukaryotic Actinochloris, and fungal Alternaria were enriched in contaminated soils compared to uncontaminated soils and represent taxa of interest for future bioremediation research. Based on our results, we recommend incorporating DNA-based multi-marker microbial community profiling at multiple sites and depths in brownfield site assessment standard methods and restoration.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Microbiota , Petróleo , Contaminantes del Suelo , Compuestos Orgánicos Volátiles , Suelo/química , Compuestos Orgánicos Volátiles/metabolismo , Contaminantes del Suelo/análisis , Metales Pesados/metabolismo , Bacterias , Cobalto/metabolismo , Microbiología del Suelo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA