Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081255

RESUMEN

Understanding the micro-mechanisms underlying the localized-ductile transition (LDT) as well as the brittle-plastic transition (BPT) has become crucial for our wider understanding of crustal processes and seismicity. Given how difficult in situ observations of these transitions are to perform, laboratory experiments might be our only way to investigate the processes active under these conditions (high T and high P). Here, we present Triaxial AppaRatus for GEoThermal energy, a new gas-based triaxial apparatus located at EPFL in Switzerland that was specifically designed to operate under conditions where both the LDT and BPT can occur in geomaterials. We show that the machine is capable of deforming rock samples at confining pressures of up to 400 MPa, temperatures of up to 800 °C, and pore pressures (liquid or gas) of up to 300 MPa while keeping the temperature gradient along samples of 40 mm in length and 20 mm in diameter minimal (less than 30 at 700 °C). Most importantly, the maximum load is 1000 kN (stresses as high as 2.2 GPa on 24 mm samples and 3 GPa on 20 mm samples), allowing for the deformation of very competent rock samples. Moreover, during deformation, the pair of syringe pore pressure pumps allow for continuous permeability or dilatancy recording. We benchmarked our machine against existing data in the literature and show that it accurately and precisely records stress, strain, permeability, pressure, and temperature.

3.
Geophys Res Lett ; 48(12): e2021GL093619, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34433992

RESUMEN

Seismological observations highlighted that earthquakes are often followed by changes in elastic properties around the fault zone. Here, we studied the origin of these variations using stick-slip experiments on saw-cut granite samples presenting different degrees of bulk damage (i.e., microcracks). Stick-slip events were induced under triaxial compression configuration with continuous active ultrasonic measurements at confining pressures representative of upper crustal conditions (15-120 MPa). Both the P-wave velocity ( V P ) and amplitude ( A P ) showed drops, concurrently with stress drops, and had a non-monotonic dependence toward the fault's stress state. Our experimental results suggest that co-seismic changes in V P were mostly controlled by the elastic re-opening of microcracks in the bulk, rather than by co-seismic damage or the formation of fault gouge. Co-seismic changes in A P were controlled by a combination of elastic re-opening of microcracks in the bulk and inelastic processes (i.e., co-seismic damage and gouge formation and dilation).

4.
Nat Commun ; 10(1): 1274, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894547

RESUMEN

Fluids are pervasive in fault zones cutting the Earth's crust; however, the effect of fluid viscosity on fault mechanics is mainly conjectured by theoretical models. We present friction experiments performed on both dry and fluid-permeated silicate and carbonate bearing-rocks, at normal effective stresses up to 20 MPa, with a slip-rate ranging between 10 µm/s and 1 m/s. Four different fluid viscosities were tested. We show that both static and dynamic friction coefficients decrease with viscosity and that dynamic friction depends on the dimensionless Sommerfeld number (S) as predicted by the elastohydrodynamic-lubrication theory (EHD).Under favourable conditions (depending on the fluid viscosity (η), co-seismic slip-rate (V), fault geometry (L/H02) and earthquake nucleation depth (∝σeff)), EHD might be an effective weakening mechanism during natural and induced earthquakes. However, at seismic slip-rate, the slip weakening distance (Dc) increases markedly for a range of fluid viscosities expected in the Earth, potentially favouring slow-slip rather than rupture propagation for small to moderate earthquakes.

5.
Nat Commun ; 9(1): 3074, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082789

RESUMEN

Earthquakes result from weakening of faults (transient decrease in friction) during co-seismic slip. Dry faults weaken due to degradation of fault asperities by frictional heating (e.g. flash heating). In the presence of fluids, theoretical models predict faults to weaken by thermal pressurization of fault fluid. However, experimental evidence of rock/fluid interactions during dynamic rupture under realistic stress conditions remains poorly documented. Here we demonstrate that the relative contribution of thermal pressurization and flash heating to fault weakening depends on fluid thermodynamic properties. Our dynamic records of laboratory earthquakes demonstrate that flash heating drives strength loss under dry and low (1 MPa) fluid pressure conditions. Conversely, flash heating is inhibited at high fluid pressure (25 MPa) because water's liquid-supercritical phase transition buffers frictional heat. Our results are supported by flash-heating theory modified for pressurized fluids and by numerical modelling of thermal pressurization. The heat buffer effect has maximum efficiency at mid-crustal depths (~2-5 km), where many anthropogenic earthquakes nucleate.

6.
Sci Rep ; 7(1): 7705, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28794474

RESUMEN

Recently, projects have been proposed to engineer deep geothermal reservoirs in the ductile crust. To examine their feasibility, we performed high-temperature (up to 1000 °C), high-pressure (130 MPa) triaxial experiments on granite (initially-intact and shock-cooled samples) in which we measured the evolution of porosity during deformation. Mechanical data and post-mortem microstuctural characterisation (X-ray computed tomography and scanning electron microscopy) indicate that (1) the failure mode was brittle up to 900 °C (shear fracture formation) but ductile at 1000 °C (no strain localisation); (2) only deformation up to 800 °C was dilatant; (3) deformation at 900 °C was brittle but associated with net compaction due to an increase in the efficiency of crystal plastic processes; (4) ductile deformation at 1000 °C was compactant; (5) thermally-shocking the granite did not influence strength or failure mode. Our data show that, while brittle behaviour increases porosity, porosity loss is associated with both ductile behaviour and transitional behaviour as the failure mode evolves from brittle to ductile. Extrapolating our data to geological strain rates suggests that the brittle-ductile transition occurs at a temperature of 400 ± 100 °C, and is associated with the limit of fluid circulation in the deep continental crust.

7.
Geophys Res Lett ; 43(7): 3263-3271, 2016 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-27667875

RESUMEN

Empirically based rate-and-state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and frictional fault behavior). However, the RSFLs were determined from experiments conducted at subseismic slip rates (V < 1 cm/s), and their extrapolation to earthquake deformation conditions (V > 0.1 m/s) remains questionable on the basis of the experimental evidence of (1) large dynamic weakening and (2) activation of particular fault lubrication processes at seismic slip rates. Here we propose a modified RSFL (MFL) based on the review of a large published and unpublished data set of rock friction experiments performed with different testing machines. The MFL, valid at steady state conditions from subseismic to seismic slip rates (0.1 µm/s < V < 3 m/s), describes the initiation of a substantial velocity weakening in the 1-20 cm/s range resulting in a critical stiffness increase that creates a peak of potential instability in that velocity regime. The MFL leads to a new definition of fault frictional stability with implications for slip event styles and relevance for models of seismic rupture nucleation, propagation, and arrest.

8.
J Seismol ; 20(4): 1187-1205, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28190968

RESUMEN

Recent estimates of fracture energy G' in earthquakes show a power-law dependence with slip u which can be summarized as G' ∝ ua where a is a positive real slightly larger than one. For cracks with sliding friction, fracture energy can be equated to Gf : the post-failure integral of the dynamic weakening curve. If the dominant dissipative process in earthquakes is friction, G' and Gf should be comparable and show a similar scaling with slip. We test this hypothesis by analyzing experiments performed on various cohesive and non-cohesive rock types, under wet and dry conditions, with imposed deformation typical of seismic slip (normal stress of tens of MPa, target slip velocity > 1 m/s and fast accelerations ≈ 6.5 m/s2). The resulting fracture energy Gf is similar to the seismological estimates, with Gf and G' being comparable over most of the slip range. However, Gf appears to saturate after several meters of slip, while in most of the reported earthquake sequences, G' appears to increase further and surpasses Gf at large magnitudes. We analyze several possible causes of such discrepancy, in particular, additional off-fault damage in large natural earthquakes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA