Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Cell Death Dis ; 15(4): 281, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643274

RESUMEN

The human mitochondrial DNA polymerase gamma is a holoenzyme, involved in mitochondrial DNA (mtDNA) replication and maintenance, composed of a catalytic subunit (POLG) and a dimeric accessory subunit (POLG2) conferring processivity. Mutations in POLG or POLG2 cause POLG-related diseases in humans, leading to a subset of Mendelian-inherited mitochondrial disorders characterized by mtDNA depletion (MDD) or accumulation of multiple deletions, presenting multi-organ defects and often leading to premature death at a young age. Considering the paucity of POLG2 models, we have generated a stable zebrafish polg2 mutant line (polg2ia304) by CRISPR/Cas9 technology, carrying a 10-nucleotide deletion with frameshift mutation and premature stop codon. Zebrafish polg2 homozygous mutants present slower development and decreased viability compared to wild type siblings, dying before the juvenile stage. Mutants display a set of POLG-related phenotypes comparable to the symptoms of human patients affected by POLG-related diseases, including remarkable MDD, altered mitochondrial network and dynamics, and reduced mitochondrial respiration. Histological analyses detected morphological alterations in high-energy demanding tissues, along with a significant disorganization of skeletal muscle fibres. Consistent with the last finding, locomotor assays highlighted a decreased larval motility. Of note, treatment with the Clofilium tosylate drug, previously shown to be effective in POLG models, could partially rescue MDD in Polg2 mutant animals. Altogether, our results point at zebrafish as an effective model to study the etiopathology of human POLG-related disorders linked to POLG2, and a suitable platform to screen the efficacy of POLG-directed drugs in POLG2-associated forms.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Enfermedades Mitocondriales , Animales , Humanos , ADN Polimerasa Dirigida por ADN/genética , Pez Cebra/genética , ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/patología , Mutación/genética , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética
2.
J Inherit Metab Dis ; 47(1): 145-175, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171948

RESUMEN

In this review, we detail the current state of application of gene therapy to primary mitochondrial disorders (PMDs). Recombinant adeno-associated virus-based (rAAV) gene replacement approaches for nuclear gene disorders have been undertaken successfully in more than ten preclinical mouse models of PMDs which has been made possible by the development of novel rAAV technologies that achieve more efficient organ targeting. So far, however, the greatest progress has been made for Leber Hereditary Optic Neuropathy, for which phase 3 clinical trials of lenadogene nolparvovec demonstrated efficacy and good tolerability. Other methods of treating mitochondrial DNA (mtDNA) disorders have also had traction, including refinements to nucleases that degrade mtDNA molecules with pathogenic variants, including transcription activator-like effector nucleases, zinc-finger nucleases, and meganucleases (mitoARCUS). rAAV-based approaches have been used successfully to deliver these nucleases in vivo in mice. Exciting developments in CRISPR-Cas9 gene editing technology have achieved in vivo gene editing in mouse models of PMDs due to nuclear gene defects and new CRISPR-free gene editing approaches have shown great potential for therapeutic application in mtDNA disorders. We conclude the review by discussing the challenges of translating gene therapy in patients both from the point of view of achieving adequate organ transduction as well as clinical trial design.


Asunto(s)
Sistemas CRISPR-Cas , Enfermedades Mitocondriales , Humanos , Animales , Ratones , Edición Génica , Terapia Genética , ADN Mitocondrial/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167033, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38280294

RESUMEN

Mitochondrial disorders are hallmarked by the dysfunction of oxidative phosphorylation (OXPHOS) yet are highly heterogeneous at the clinical and genetic levels. Striking tissue-specific pathological manifestations are a poorly understood feature of these conditions, even if the disease-causing genes are ubiquitously expressed. To investigate the functional basis of this phenomenon, we analyzed several OXPHOS-related bioenergetic parameters, including oxygen consumption rates, electron transfer system (ETS)-related coenzyme Q (mtCoQ) redox state and production of reactive oxygen species (ROS) in mouse brain and liver mitochondria fueled by different substrates. In addition, we determined how these functional parameters are affected by ETS impairment in a tissue-specific manner using pathologically relevant mouse models lacking either Ndufs4 or Ttc19, leading to Complex I (CI) or Complex III (CIII) deficiency, respectively. Detailed OXPHOS analysis revealed striking differences between brain and liver mitochondria in the capacity of the different metabolic substrates to fuel the ETS, reduce the ETS-related mtCoQ, and to induce ROS production. In addition, ETS deficiency due to either CI or CIII dysfunction had a much greater impact on the intrinsic bioenergetic parameters of brain compared with liver mitochondria. These findings are discussed in terms of the still rather mysterious tissue-specific manifestations of mitochondrial disease.


Asunto(s)
Mitocondrias Hepáticas , Enfermedades Mitocondriales , Animales , Ratones , Mitocondrias Hepáticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Metabolismo Energético , Encéfalo/metabolismo , Enfermedades Mitocondriales/metabolismo , Complejo I de Transporte de Electrón/metabolismo
4.
Elife ; 122023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37823874

RESUMEN

Mammalian mitochondrial respiratory chain (MRC) complexes are able to associate into quaternary structures named supercomplexes (SCs), which normally coexist with non-bound individual complexes. The functional significance of SCs has not been fully clarified and the debate has been centered on whether or not they confer catalytic advantages compared with the non-bound individual complexes. Mitochondrial respiratory chain organization does not seem to be conserved in all organisms. In fact, and differently from mammalian species, mitochondria from Drosophila melanogaster tissues are characterized by low amounts of SCs, despite the high metabolic demands and MRC activity shown by these mitochondria. Here, we show that attenuating the biogenesis of individual respiratory chain complexes was accompanied by increased formation of stable SCs, which are missing in Drosophila melanogaster in physiological conditions. This phenomenon was not accompanied by an increase in mitochondrial respiratory activity. Therefore, we conclude that SC formation is necessary to stabilize the complexes in suboptimal biogenesis conditions, but not for the enhancement of respiratory chain catalysis.


Asunto(s)
Drosophila melanogaster , Membranas Mitocondriales , Animales , Transporte de Electrón/fisiología , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Mamíferos
5.
iScience ; 26(10): 107955, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37810222

RESUMEN

Mutations in MPV17 are a major contributor to mitochondrial DNA (mtDNA) depletion syndromes, a group of inherited genetic conditions due to mtDNA instability. To investigate the role of MPV17 in mtDNA maintenance, we generated and characterized a Drosophila melanogaster Mpv17 (dMpv17) KO model showing that the absence of dMpv17 caused profound mtDNA depletion in the fat body but not in other tissues, increased glycolytic flux and reduced lifespan in starvation. Accordingly, the expression of key genes of glycogenolysis and glycolysis was upregulated in dMpv17 KO flies. In addition, we demonstrated that dMpv17 formed a channel in planar lipid bilayers at physiological ionic conditions, and its electrophysiological hallmarks were affected by pathological mutations. Importantly, the reconstituted channel translocated uridine but not orotate across the membrane. Our results indicate that dMpv17 forms a channel involved in translocation of key metabolites and highlight the importance of dMpv17 in energy homeostasis and mitochondrial function.

6.
Front Pharmacol ; 14: 1220620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576821

RESUMEN

Introduction: Biallelic variants in PITRM1 are associated with a slowly progressive syndrome characterized by intellectual disability, spinocerebellar ataxia, cognitive decline and psychosis. The pitrilysin metallopeptidase 1 (PITRM1) is a mitochondrial matrix enzyme, which digests diverse oligopeptides, including the mitochondrial targeting sequences (MTS) that are cleaved from proteins imported across the inner mitochondrial membrane by the mitochondrial processing peptidase (MPP). Mitochondrial peptidases also play a role in the maturation of Frataxin, the protein affected in Friedreich's ataxia. Recent studies in yeast indicated that the mitochondrial matrix protease Ste23, which is a homologue of the human insulin-degrading enzyme (IDE), cooperates with Cym1 (homologue of PITRM1) to ensure the proper functioning of the preprotein processing machinery. In humans, IDE could be upregulated by Peroxisome Proliferator-Activated Receptor Gamma (PPARG) agonists. Methods: We investigated preprotein processing, mitochondrial membrane potential and MTS degradation in control and patients' fibroblasts, and we evaluated the pharmacological effect of the PPARG agonist Pioglitazone on mitochondrial proteostasis. Results: We discovered that PITRM1 dysfunction results in the accumulation of MTS, leading to the disruption and dissipation of the mitochondrial membrane potential. This triggers a feedback inhibition of MPP activity, consequently impairing the processing and maturation of Frataxin. Furthermore, we found that the pharmacological stimulation of PPARG by Pioglitazone upregulates IDE and also PITRM1 protein levels restoring the presequence processing machinery and improving Frataxin maturation and mitochondrial function. Discussion: Our findings provide mechanistic insights and suggest a potential pharmacological strategy for this rare neurodegenerative mitochondrial disease.

7.
Cardiovasc Res ; 119(12): 2213-2229, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37395010

RESUMEN

AIMS: Mitochondrial Complex I assembly (MCIA) is a multi-step process that necessitates the involvement of a variety of assembly factors and chaperones to ensure that the final active enzyme is correctly assembled. The role of the assembly factor evolutionarily conserved signalling intermediate in the toll (ECSIT) pathway was studied across various murine tissues to determine its role in this process and how this varied between tissues of varying energetic demands. We hypothesized that many of the known functions of ECSIT were unhindered by the introduction of an ENU-induced mutation, while its role in Complex I assembly was affected on a tissue-specific basis. METHODS AND RESULTS: Here, we describe a mutation in the MCIA factor ECSIT that reveals tissue-specific requirements for ECSIT in Complex I assembly. MCIA is a multi-step process dependent on assembly factors that organize and arrange the individual subunits, allowing for their incorporation into the complete enzyme complex. We have identified an ENU-induced mutation in ECSIT (N209I) that exhibits a profound effect on Complex I component expression and assembly in heart tissue, resulting in hypertrophic cardiomyopathy in the absence of other phenotypes. The dysfunction of Complex I appears to be cardiac specific, leading to a loss of mitochondrial output as measured by Seahorse extracellular flux and various biochemical assays in heart tissue, while mitochondria from other tissues were unaffected. CONCLUSIONS: These data suggest that the mechanisms underlying Complex I assembly and activity may have tissue-specific elements tailored to the specific demands of cells and tissues. Our data suggest that tissues with high-energy demands, such as the heart, may utilize assembly factors in different ways to low-energy tissues in order to improve mitochondrial output. These data have implications for the diagnosis and treatment of various disorders of mitochondrial function as well as cardiac hypertrophy with no identifiable underlying genetic cause.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Transducción de Señal , Ratones , Animales , Proteínas Adaptadoras Transductoras de Señales/genética , Mutación
8.
Nat Commun ; 14(1): 1849, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012289

RESUMEN

Cachexia is a debilitating wasting syndrome and highly prevalent comorbidity in cancer patients. It manifests especially with energy and mitochondrial metabolism aberrations that promote tissue wasting. We recently identified nicotinamide adenine dinucleotide (NAD+) loss to associate with muscle mitochondrial dysfunction in cancer hosts. In this study we confirm that depletion of NAD+ and downregulation of Nrk2, an NAD+ biosynthetic enzyme, are common features of severe cachexia in different mouse models. Testing NAD+ repletion therapy in cachectic mice reveals that NAD+ precursor, vitamin B3 niacin, efficiently corrects tissue NAD+ levels, improves mitochondrial metabolism and ameliorates cancer- and chemotherapy-induced cachexia. In a clinical setting, we show that muscle NRK2 is downregulated in cancer patients. The low expression of NRK2 correlates with metabolic abnormalities underscoring the significance of NAD+ in the pathophysiology of human cancer cachexia. Overall, our results propose NAD+ metabolism as a therapy target for cachectic cancer patients.


Asunto(s)
Neoplasias , Niacina , Humanos , Ratones , Animales , Niacina/farmacología , Niacina/uso terapéutico , Niacina/metabolismo , NAD/metabolismo , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Niacinamida/metabolismo , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Músculo Esquelético/metabolismo
10.
Biomolecules ; 13(2)2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36830747

RESUMEN

The fruit fly-i.e., Drosophila melanogaster-has proven to be a very useful model for the understanding of basic physiological processes, such as development or ageing. The availability of straightforward genetic tools that can be used to produce engineered individuals makes this model extremely interesting for the understanding of the mechanisms underlying genetic diseases in physiological models. Mitochondrial diseases are a group of yet-incurable genetic disorders characterized by the malfunction of the oxidative phosphorylation system (OXPHOS), which is the highly conserved energy transformation system present in mitochondria. The generation of D. melanogaster models of mitochondrial disease started relatively recently but has already provided relevant information about the molecular mechanisms and pathological consequences of mitochondrial dysfunction. Here, we provide an overview of such models and highlight the relevance of D. melanogaster as a model to study mitochondrial disorders.


Asunto(s)
Drosophila melanogaster , Enfermedades Mitocondriales , Animales , Drosophila melanogaster/genética , Drosophila , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Fosforilación Oxidativa
11.
Handb Clin Neurol ; 194: 259-277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36813318

RESUMEN

Mitochondrial diseases are extremely heterogeneous genetic disorders due to faulty oxidative phosphorylation (OxPhos). No cure is currently available for these conditions, beside supportive interventions aimed at relieving complications. Mitochondria are under a double genetic control carried out by the mitochondrial DNA (mtDNA) and by nuclear DNA. Thus, not surprisingly, mutations in either genome can cause mitochondrial disease. Although mitochondria are usually associated with respiration and ATP synthesis, they play fundamental roles in a large number of other biochemical, signaling, and execution pathways, each being a potential target for therapeutic interventions. These can be classified as general therapies, i.e., potentially applicable to a number of different mitochondrial conditions, or therapies tailored to a single disease, i.e., personalized approaches, such as gene therapy, cell therapy, and organ replacement. Mitochondrial medicine is a particularly lively research field, and the last few years witnessed a steady increase in the number of clinical applications. This chapter will present the most recent therapeutic attempts emerged from preclinical work and an update of the currently ongoing clinical applications. We think that we are starting a new era in which the etiologic treatment of these conditions is becoming a realistic option.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/genética , Mitocondrias/genética , ADN Mitocondrial/genética , Mutación , Terapias en Investigación
12.
Methods Mol Biol ; 2615: 381-395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807805

RESUMEN

Over the last 10 years, next generation sequencing (NGS) became the gold standard for both diagnosis and discovery of new disease genes responsible for heterogeneous disorders, such as mitochondrial encephalomyopathies. The application of this technology to mtDNA mutations poses extra challenges compared to other genetic conditions because of the peculiarities of mitochondrial genetics and the requirement for proper NGS data management and analysis. Here, we describe a detailed, clinically relevant protocol to sequence the whole mtDNA and quantify heteroplasmy levels of mtDNA variants, starting from total DNA through the generation of a single PCR amplicon.


Asunto(s)
ADN Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento , ADN Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Heteroplasmia , Mitocondrias/genética , Mutación , Análisis de Secuencia de ADN/métodos
13.
FEBS Lett ; 597(2): 246-261, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36217875

RESUMEN

The compartmentation and distribution of metabolites between mitochondria and the rest of the cell is a key parameter of cell signalling and pathology. Here, we have developed a rapid fractionation procedure that enables us to take mouse heart and liver from in vivo and within ~ 30 s stabilise the distribution of metabolites between mitochondria and the cytosol by rapid cooling, homogenisation and dilution. This is followed by centrifugation of mitochondria through an oil layer to separate mitochondrial and cytosolic fractions for subsequent metabolic analysis. Using this procedure revealed the in vivo compartmentation of mitochondrial metabolites and will enable the assessment of the distribution of metabolites between the cytosol and mitochondria during a range of situations in vivo.


Asunto(s)
Corazón , Mitocondrias , Ratones , Animales , Citosol/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias Cardíacas/metabolismo , Fraccionamiento Celular/métodos
14.
Biochim Biophys Acta Bioenerg ; 1864(2): 148947, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481273

RESUMEN

The mitochondrial respiratory chain or electron transport chain (ETC) facilitates redox reactions which ultimately lead to the reduction of oxygen to water (respiration). Energy released by this process is used to establish a proton electrochemical gradient which drives ATP formation (oxidative phosphorylation, OXPHOS). It also plays an important role in vital processes beyond ATP formation and cellular metabolism, such as heat production, redox and ion homeostasis. Dysfunction of the ETC can thus impair cellular and organismal viability and is thought to be the underlying cause of a heterogeneous group of so-called mitochondrial diseases. Plants, yeasts, and many lower organisms, but not insects and vertebrates, possess an enzymatic mechanism that confers resistance to respiratory stress conditions, i.e., the alternative oxidase (AOX). Even in cells that naturally lack AOX, it is autonomously imported into the mitochondrial compartment upon xenotopic expression, where it refolds and becomes catalytically engaged when the cytochrome segment of the ETC is blocked. AOX was therefore proposed as a tool to study disease etiologies. To this end, AOX has been xenotopically expressed in mammalian cells and disease models of the fruit fly and mouse. Surprisingly, AOX showed remarkable rescue effects in some cases, whilst in others it had no effect or even exacerbated a condition. Here we summarize what has been learnt from the use of AOX in various disease models and discuss issues which still need to be addressed in order to understand the role of the ETC in health and disease.


Asunto(s)
Enfermedades Mitocondriales , Oxidorreductasas , Animales , Ratones , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adenosina Trifosfato , Mamíferos/metabolismo
15.
Brain ; 145(10): 3405-3414, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36270002

RESUMEN

Leigh disease, or subacute necrotizing encephalomyelopathy, a genetically heterogeneous condition consistently characterized by defective mitochondrial bioenergetics, is the most common oxidative-phosphorylation related disease in infancy. Both neurological signs and pathological lesions of Leigh disease are mimicked by the ablation of the mouse mitochondrial respiratory chain subunit Ndufs4-/-, which is part of, and crucial for, normal Complex I activity and assembly, particularly in the brains of both children and mice. We previously conveyed the human NDUFS4 gene to the mouse brain using either single-stranded adeno-associated viral 9 recombinant vectors or the PHP.B adeno-associated viral vector. Both these approaches significantly prolonged the lifespan of the Ndufs4-/- mouse model but the extension of the survival was limited to a few weeks by the former approach, whereas the latter was applicable to a limited number of mouse strains, but not to primates. Here, we exploited the recent development of new, self-complementary adeno-associated viral 9 vectors, in which the transcription rate of the recombinant gene is markedly increased compared with the single-stranded adeno-associated viral 9 and can be applied to all mammals, including humans. Either single intra-vascular or double intra-vascular and intra-cerebro-ventricular injections were performed at post-natal Day 1. The first strategy ubiquitously conveyed the human NDUFS4 gene product in Ndufs4-/- mice, doubling the lifespan from 45 to ≈100 days after birth, when the mice developed rapidly progressive neurological failure. However, the double, contemporary intra-vascular and intra-cerebroventricular administration of self-complementary-adeno-associated viral NDUFS4 prolonged healthy lifespan up to 9 months of age. These mice were well and active at euthanization, at 6, 7, 8 and 9 months of age, to investigate the brain and other organs post-mortem. Robust expression of hNDUFS4 was detected in different cerebral areas preserving normal morphology and restoring Complex I activity and assembly. Our results warrant further investigation on the translatability of self-complementary-adeno-associated viral 9 NDUFS4-based therapy in the prodromal phase of the disease in mice and eventually humans.


Asunto(s)
Enfermedad de Leigh , Niño , Ratones , Animales , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Dependovirus/genética , Fosforilación Oxidativa , Modelos Animales de Enfermedad , Ratones Noqueados , Mamíferos/metabolismo
16.
Nat Rev Neurol ; 18(11): 689-698, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36257993

RESUMEN

The variable clinical and biochemical manifestations of primary mitochondrial diseases (PMDs), and the complexity of mitochondrial genetics, have proven to be a substantial barrier to the development of effective disease-modifying therapies. Encouraging data from gene therapy trials in patients with Leber hereditary optic neuropathy and advances in DNA editing techniques have raised expectations that successful clinical transition of genetic therapies for PMDs is feasible. However, obstacles to the clinical application of genetic therapies in PMDs remain; the development of innovative, safe and effective genome editing technologies and vectors will be crucial to their future success and clinical approval. In this Perspective, we review progress towards the genetic treatment of nuclear and mitochondrial DNA-related PMDs. We discuss advances in mitochondrial DNA editing technologies alongside the unique challenges to targeting mitochondrial genomes. Last, we consider ongoing trials and regulatory requirements.


Asunto(s)
Enfermedades Mitocondriales , Atrofia Óptica Hereditaria de Leber , Humanos , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/terapia , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , ADN Mitocondrial/genética , Mitocondrias/genética , Terapia Genética
17.
Front Cell Dev Biol ; 10: 892069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663391

RESUMEN

The redox activity of cytochrome c oxidase (COX), the terminal oxidase of the mitochondrial respiratory chain (MRC), depends on the incorporation of iron and copper into its catalytic centers. Many mitochondrial proteins have specific roles for the synthesis and delivery of metal-containing cofactors during COX biogenesis. In addition, a large set of different factors possess other molecular functions as chaperones or translocators that are also necessary for the correct maturation of these complexes. Pathological variants in genes encoding structural MRC subunits and these different assembly factors produce respiratory chain deficiency and lead to mitochondrial disease. COX deficiency in Drosophila melanogaster, induced by downregulated expression of three different assembly factors and one structural subunit, resulted in decreased copper content in the mitochondria accompanied by different degrees of increase in the cytosol. The disturbances in metal homeostasis were not limited only to copper, as some changes in the levels of cytosolic and/or mitochondrial iron, manganase and, especially, zinc were observed in several of the COX-deficient groups. The altered copper and zinc handling in the COX defective models resulted in a transcriptional response decreasing the expression of copper transporters and increasing the expression of metallothioneins. We conclude that COX deficiency is generally responsible for an altered mitochondrial and cellular homeostasis of transition metals, with variations depending on the origin of COX assembly defect.

18.
Methods Mol Biol ; 2497: 291-299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35771450

RESUMEN

The ubiquinone (Q) pool represents a node in the mitochondrial electron transport chain (ETC) onto which the electrons of all respiratory dehydrogenases converge. The redox state of the Q pool correlates closely with the electron flux through the ETC and is thus a parameter of great metabolic value for both the mitochondrial and cellular metabolism. Here, we describe the simultaneous measurement of respiratory rates of isolated mouse heart mitochondria and the redox state of their Q pool using a custom-made combination of a Clark-type oxygen electrode and a Q electrode.


Asunto(s)
Mitocondrias Cardíacas , Ubiquinona , Animales , Transporte de Electrón , Ratones , Mitocondrias Cardíacas/metabolismo , Oxidación-Reducción , Ubiquinona/metabolismo
19.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743286

RESUMEN

This Special Issue collects current knowledge on the molecular mechanisms underlying mitochondrial dysfunction and its related diseases, as well as therapies and perspectives pertaining to their treatment [...].


Asunto(s)
Mitocondrias , Mitocondrias/genética
20.
EMBO Rep ; 23(8): e54825, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35699132

RESUMEN

The mitochondrial respiratory chain (MRC) is composed of four multiheteromeric enzyme complexes. According to the endosymbiotic origin of mitochondria, eukaryotic MRC derives from ancestral proteobacterial respiratory structures consisting of a minimal set of complexes formed by a few subunits associated with redox prosthetic groups. These enzymes, which are the "core" redox centers of respiration, acquired additional subunits, and increased their complexity throughout evolution. Cytochrome c oxidase (COX), the terminal component of MRC, has a highly interspecific heterogeneous composition. Mammalian COX consists of 14 different polypeptides, of which COX7B is considered the evolutionarily youngest subunit. We applied proteomic, biochemical, and genetic approaches to investigate the COX composition in the invertebrate model Drosophila melanogaster. We identified and characterized a novel subunit which is widely different in amino acid sequence, but similar in secondary and tertiary structures to COX7B, and provided evidence that this object is in fact replacing the latter subunit in virtually all protostome invertebrates. These results demonstrate that although individual structures may differ the composition of COX is functionally conserved between vertebrate and invertebrate species.


Asunto(s)
Drosophila melanogaster , Complejo IV de Transporte de Electrones , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Mamíferos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA