RESUMEN
Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by N-sulfoglucosamine sulfohydrolase (SGSH) deficiency. SGSH removes the sulfate from N-sulfoglucosamine residues on the nonreducing end of heparan sulfate (HS-NRE) within lysosomes. Enzyme deficiency results in accumulation of partially degraded HS within lysosomes throughout the body, leading to a progressive severe neurological disease. Enzyme replacement therapy has been proposed, but further evaluation of the treatment strategy is needed. Here, we used Chinese hamster ovary cells to produce a highly soluble and fully active recombinant human sulfamidase (rhSGSH). We discovered that rhSGSH utilizes both the CI-MPR and LRP1 receptors for uptake into patient fibroblasts. A single intracerebroventricular (ICV) injection of rhSGSH in MPS IIIA mice resulted in a tissue half-life of 9 days and widespread distribution throughout the brain. Following a single ICV dose, both total HS and the MPS IIIA disease-specific HS-NRE were dramatically reduced, reaching a nadir 2 weeks post dose. The durability of effect for reduction of both substrate and protein markers of lysosomal dysfunction and a neuroimmune response lasted through the 56 days tested. Furthermore, seven weekly 148 µg doses ICV reduced those markers to near normal and produced a 99.5% reduction in HS-NRE levels. A pilot study utilizing every other week dosing in two animals supports further evaluation of less frequent dosing. Finally, our dose-response study also suggests lower doses may be efficacious. Our findings show that rhSGSH can normalize lysosomal HS storage and markers of a neuroimmune response when delivered ICV.
Asunto(s)
Encefalopatías , Mucopolisacaridosis III , Cricetinae , Animales , Humanos , Ratones , Mucopolisacaridosis III/tratamiento farmacológico , Mucopolisacaridosis III/metabolismo , Células CHO , Proyectos Piloto , Cricetulus , Hidrolasas/metabolismo , Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Encefalopatías/metabolismo , Lisosomas/metabolismo , Modelos Animales de EnfermedadRESUMEN
Adeno-associated virus 5 (AAV5)-human factor VIII-SQ (hFVIII-SQ; valoctocogene roxaparvovec) is an AAV-mediated product under evaluation for treatment of severe hemophilia A, which contains a B-domain-deleted hFVIII (hFVIII-SQ) transgene and a hybrid liver-specific promotor (HLP). To increase FVIII-SQ expression and reduce the vector dose required, a stronger promoter may be considered. However, because FVIII-SQ is a protein known to be difficult to fold and secrete, this could potentially induce endoplasmic reticulum (ER) stress. We evaluated the effect of two AAV5-hFVIII-SQ vectors with different liver-specific promoter strength (HLP << 100ATGB) on hepatic ER stress in mice. Five weeks after receiving vehicle or vector, the percentage of transduced hepatocytes and levels of liver hFVIII-SQ DNA and RNA increased dose dependently for both vectors. At lower doses, plasma hFVIII-SQ protein levels were higher for 100ATGB. This difference was attenuated at the highest dose. For 100ATGB, liver hFVIII-SQ protein accumulated dose dependently, with increased expression of ER stress markers at the highest dose, suggesting hepatocytes reached or exceeded their capacity to fold/secrete hFVIII-SQ. These data suggest that weaker promoters may require relatively higher doses to distribute expression load across a greater number of hepatocytes, whereas relatively stronger promoters may produce comparable levels of FVIII in fewer hepatocytes, with potential for ER stress.
RESUMEN
AAV5-hFVIII-SQ (valoctocogene roxaparvovec) is an adeno-associated virus (AAV)-mediated gene therapy vector containing a B-domain-deleted human factor VIII (hFVIII-SQ) transgene. In a phase 1/2 clinical study of AAV5-hFVIII-SQ for severe hemophilia A (FVIII < 1 IU/dL), participants received prednisolone to mitigate potential immune-mediated reactions to the gene therapy and demonstrated concomitant elevations in plasma FVIII levels, following a single administration of AAV5-hFVIII-SQ. To assess whether prednisolone is capable of directly modulating transgene expression or levels of circulating hepatic enzymes, C57BL/6 mice were given intravenous vehicle, 2 × 1013 vector genomes (vg)/kg AAV5-hFVIII-SQ, or 6 × 1013 vg/kg AAV5-hFVIII-SQ, followed by either daily oral prednisolone or water. Mice were euthanized 4 or 13 weeks after vector administration. Hepatic hFVIII-SQ DNA, RNA, and protein (immunostaining), plasma hFVIII-SQ protein and FVIII activity, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured. Liver hFVIII-SQ DNA, RNA, and plasma hFVIII-SQ protein and activity increased in a dose-dependent manner, with or without prednisolone. In summary, chronic prednisolone treatment in mice treated with AAV5-hFVIII-SQ did not modulate levels of liver hFVIII-SQ DNA, RNA, or the percentage and distribution of hFVIII-SQ-positive hepatocytes, nor did it regulate levels of plasma hFVIII-SQ protein or activity, or affect levels of plasma AST or ALT.
RESUMEN
BMN 250 is being developed as enzyme replacement therapy for Sanfilippo type B, a primarily neurological rare disease, in which patients have deficient lysosomal alpha-N-acetylglucosaminidase (NAGLU) enzyme activity. BMN 250 is taken up in target cells by the cation-independent mannose 6-phosphate receptor (CI-MPR, insulin-like growth factor 2 receptor), which then facilitates transit to the lysosome. BMN 250 is dosed directly into the central nervous system via the intracerebroventricular (ICV) route, and the objective of this work was to compare systemic intravenous (IV) and ICV delivery of BMN 250 to confirm the value of ICV dosing. We first assess the ability of enzyme to cross a potentially compromised blood-brain barrier in the Naglu-/- mouse model and then assess the potential for CI-MPR to be employed for receptor-mediated transport across the blood-brain barrier. In wild-type and Naglu-/- mice, CI-MPR expression in brain vasculature is high during the neonatal period but virtually absent by adolescence. In contrast, CI-MPR remains expressed through adolescence in non-affected non-human primate and human brain vasculature. Combined results from IV administration of BMN 250 in Naglu-/- mice and IV and ICV administration in healthy juvenile non-human primates suggest a limitation to therapeutic benefit from IV administration because enzyme distribution is restricted to brain vascular endothelial cells: enzyme does not reach target neuronal cells following IV administration, and pharmacological response following IV administration is likely restricted to clearance of substrate in endothelial cells. In contrast, ICV administration enables central nervous system enzyme replacement with biodistribution to target cells.
Asunto(s)
Acetilglucosaminidasa/administración & dosificación , Acetilglucosaminidasa/genética , Barrera Hematoencefálica/química , Factor II del Crecimiento Similar a la Insulina/administración & dosificación , Mucopolisacaridosis III/tratamiento farmacológico , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes de Fusión/administración & dosificación , Acetilglucosaminidasa/uso terapéutico , Administración Intravenosa , Animales , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Femenino , Infusiones Intraventriculares , Factor II del Crecimiento Similar a la Insulina/uso terapéutico , Masculino , Ratones , Ratones Transgénicos , Mucopolisacaridosis III/genética , Primates , Proteínas Recombinantes de Fusión/uso terapéutico , Investigación Biomédica TraslacionalRESUMEN
Sanfilippo syndrome type B (mucopolysaccharidosis IIIB), caused by inherited deficiency of α-N-acetylglucosaminidase (NAGLU), required for lysosomal degradation of heparan sulfate (HS), is a pediatric neurodegenerative disorder with no approved treatment. Intracerebroventricular (ICV) delivery of a modified recombinant NAGLU, consisting of human NAGLU fused with insulin-like growth factor 2 (IGF2) for enhanced lysosomal targeting, was previously shown to result in marked enzyme uptake and clearance of HS storage in the Naglu-/- mouse brain. To further evaluate regional, cell type-specific, and dose-dependent biodistribution of NAGLU-IGF2 (BMN 250) and its effects on biochemical and histological pathology, Naglu-/- mice were treated with 1-100 µg ICV doses (four times over 2 weeks). 1 day after the last dose, BMN 250 (100 µg doses) resulted in above-normal NAGLU activity levels, broad biodistribution, and uptake in all cell types, with NAGLU predominantly localized to neurons in the Naglu-/- mouse brain. This led to complete clearance of disease-specific HS and reduction of secondary lysosomal defects and neuropathology across various brain regions lasting for at least 28 days after the last dose. The substantial brain uptake of NAGLU attainable by this highest ICV dosage was required for nearly complete attenuation of disease-driven storage accumulations and neuropathology throughout the Naglu-/- mouse brain.
RESUMEN
Many enzyme replacement therapies (ERTs) for lysosomal storage disorders use the cell-surface cation-independent mannose-6 phosphate receptor (CI-M6PR) to deliver ERTs to the lysosome. However, neutralizing antibodies (NAb) may interfere with this process. We previously reported that most individuals with Morquio A who received elosulfase alfa in the phase 3 MOR-004 trial tested positive for NAbs capable of interfering with binding to CI-M6PR ectodomain in an ELISA-based assay. However, no correlation was detected between NAb occurrence and clinical efficacy or pharmacodynamics. To quantify and better characterize the impact of NAbs, we developed a functional cell-based flow cytometry assay with a titer step that detects antibodies capable of interfering with elosulfase alfa uptake. Serum samples collected during the MOR-004 trial were tested and titers were determined. Consistent with earlier findings on NAb positivity, no correlations were observed between NAb titers and the clinical outcomes of elosulfase alfa-treated individuals with Morquio A.