Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38861140

RESUMEN

The fundamental idea underlying the use of amorphous solid dispersions (ASDs) is to make the most of the solubility advantage of the amorphous form of a drug. However, the drug stability becomes compromised due to the higher free energy and disorder of molecular packing in the amorphous phase, leading to crystallization. Polymers are used as a matrix to form a stable homogeneous amorphous system to overcome the stability concern. The present work aims to design ASD-based formulations under the umbrella of quality by design principles for improving oral drug bioavailability, using celecoxib (CXB) as a model drug. ASDs were prepared from selected polymers and tested both individually and in combinations, using various manufacturing techniques: high-shear homogenization, high-pressure homogenization, microfluidics-on-a-chip, and spray drying. The resulting dispersions were further optimized, resorting to a 32 full-factorial design, considering the drug:polymers ratio and the total solid content as variables. The formulated products were evaluated regarding analytical centrifugation and the influence of the different polymers on the intrinsic dissolution rate of the CXB-ASDs. Microfluidics-on-a-chip led to the amorphous status of the formulation. The in vitro evaluation demonstrated a remarkable 26-fold enhancement in the intrinsic dissolution rate, and the translation of this formulation into tablets as the final dosage form is consistent with the observed performance enhancement. These findings are supported by ex vivo assays, which exhibited a two-fold increase in permeability compared to pure CXB. This study tackles the bioavailability hurdles encountered with diverse active compounds, offering insights into the development of more effective drug delivery platforms.

2.
ACS Nano ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861272

RESUMEN

Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.

3.
Colloids Surf B Biointerfaces ; 241: 113983, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38850741

RESUMEN

Glioblastoma (GB) is one of the most lethal types of neoplasms with unique anatomic, physiologic, and pathologic features that usually persist after exposure to standard therapeutic modalities. It is biologically aggressive, and the existence of the blood-brain barrier (BBB) limits the efficacy of standard therapies. In this work, we hypothesize the potential of surface-functionalized ultra-small nanostructured lipid carriers (usNLCs) with charge-switchable cell-penetrating peptides (CPPs) to overcome this biological barrier and improve targeted delivery to brain tumor tissues. The big question is: what is the potential of CPPs in directing nanoparticles toward brain tumor tissue? To answer this question, the usNLCs were functionalized with distinct biomolecules [five CPPs, c(RGDfK) and transferrin, Tf] through electrostatic interaction and its ability as a targeting approach to BBB (HBMEC) and glioma cells (U87 cells) evaluated in terms of physicochemical properties, cellular uptake, permeability in a 2D-BBB model, and tumor growth inhibition. Monte Carlo simulations elucidated CPP adsorption patterns. The permeability studies revealed that targeted usNLCs, especially usNLCsTf and usNLCsCPP4, exhibited an increased permeability coefficient compared to the non-targeted usNLCs. Functionalized usNLCs evidenced enhanced uptake in BBB cells, with smaller CPPs showing higher internalization (CPP1 and CPP2). Similarly, functionalized usNLCs exhibited more significant cytotoxicity in glioma cells, with specific CPPs promoting favorable internalization. Analysis of the endocytic pathway indicated that usNLCsCPPs were mainly internalized by direct translocation and caveolae-mediated endocytosis. Optimal usNLCs with dual targeting capabilities to both BBB and GB cells provide a promising therapeutic strategy for GB.

4.
Pharmaceutics ; 16(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38794277

RESUMEN

This review outlines the evolutionary journey from traditional two-dimensional (2D) cell culture to the revolutionary field of organ-on-a-chip technology. Organ-on-a-chip technology integrates microfluidic systems to mimic the complex physiological environments of human organs, surpassing the limitations of conventional 2D cultures. This evolution has opened new possibilities for understanding cell-cell interactions, cellular responses, drug screening, and disease modeling. However, the design and manufacture of microchips significantly influence their functionality, reliability, and applicability to different biomedical applications. Therefore, it is important to carefully consider design parameters, including the number of channels (single, double, or multi-channels), the channel shape, and the biological context. Simultaneously, the selection of appropriate materials compatible with the cells and fabrication methods optimize the chips' capabilities for specific applications, mitigating some disadvantages associated with these systems. Furthermore, the success of organ-on-a-chip platforms greatly depends on the careful selection and utilization of cell resources. Advances in stem cell technology and tissue engineering have contributed to the availability of diverse cell sources, facilitating the development of more accurate and reliable organ-on-a-chip models. In conclusion, a holistic perspective of in vitro cellular modeling is provided, highlighting the integration of microfluidic technology and meticulous chip design, which play a pivotal role in replicating organ-specific microenvironments. At the same time, the sensible use of cell resources ensures the fidelity and applicability of these innovative platforms in several biomedical applications.

5.
Gels ; 10(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534606

RESUMEN

Hydrogels are polymeric materials that possess a set of characteristics meeting various requirements of an ideal wound dressing, making them promising for wound care. These features include, among others, the ability to absorb and retain large amounts of water and the capacity to closely mimic native structures, such as the extracellular matrix, facilitating various cellular processes like proliferation and differentiation. The polymers used in hydrogel formulations exhibit a broad spectrum of properties, allowing them to be classified into two main categories: natural polymers like collagen and chitosan, and synthetic polymers such as polyurethane and polyethylene glycol. This review offers a comprehensive overview and critical analysis of the key polymers that can constitute hydrogels, beginning with a brief contextualization of the polymers. It delves into their function, origin, and chemical structure, highlighting key sources of extraction and obtaining. Additionally, this review encompasses the main intrinsic properties of these polymers and their roles in the wound healing process, accompanied, whenever available, by explanations of the underlying mechanisms of action. It also addresses limitations and describes some studies on the effectiveness of isolated polymers in promoting skin regeneration and wound healing. Subsequently, we briefly discuss some application strategies of hydrogels derived from their intrinsic potential to promote the wound healing process. This can be achieved due to their role in the stimulation of angiogenesis, for example, or through the incorporation of substances like growth factors or drugs, such as antimicrobials, imparting new properties to the hydrogels. In addition to substance incorporation, the potential of hydrogels is also related to their ability to serve as a three-dimensional matrix for cell culture, whether it involves loading cells into the hydrogel or recruiting cells to the wound site, where they proliferate on the scaffold to form new tissue. The latter strategy presupposes the incorporation of biosensors into the hydrogel for real-time monitoring of wound conditions, such as temperature and pH. Future prospects are then ultimately addressed. As far as we are aware, this manuscript represents the first comprehensive approach that brings together and critically analyzes fundamental aspects of both natural and synthetic polymers constituting hydrogels in the context of cutaneous wound healing. It will serve as a foundational point for future studies, aiming to contribute to the development of an effective and environmentally friendly dressing for wounds.

6.
Pharmaceutics ; 16(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38543215

RESUMEN

By definition, biosimilar medicinal products are biological medicinal products that are similar to other biological medicinal products that are already on the market-the reference medicinal products. Access to biosimilar medicines is a current reality. However, to achieve this goal, it is extremely important to consistently and scientifically substantiate the regulatory requirements necessary for biosimilar medicines when accessing the market. Based on an analysis of the raw materials and the type of methods used in the manufacturing processes of biological medicines, it is known that this tends to be more complex for the quality of the finished product than the manufacture of molecules obtained through a chemical process. It is then relevant to highlight the main differences between both products: biological medicines manufactured using biotechnology and the current generics containing active pharmaceutical ingredients (APIs) obtained from synthetic processes. Once arriving at the approval process of these medicinal products, it is imperative to analyse the guidance documents and the regulatory framework that create the rules that allow these biosimilar medicinal products to come to the market. The present review aimed at documenting comparatively the specific provisions of European legislation, through the European Medicines Agency (EMA), as well as the legislation of the United States of America, through the Food and Drug Administration (FDA). This was then translated into a critical appraisal of what concerns the specific criteria that determine the favourable evaluation of a biosimilar when an application for marketing authorisation is submitted to different regulatory agencies. The gathered evidence suggests that the key to the success of biosimilar medicines lies in a more rigorous and universal regulation as well as a greater knowledge, acceptance, and awareness of health professionals to enable more patients to be treated with biological strategies at an earlier stage of the disease and with more affordable medicines, ensuring always the safety and efficacy of those medicines.

7.
Int J Pharm ; 656: 124012, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537923

RESUMEN

Over the past decade, topically applied drug products have experienced extraordinary price increases, due to the shortage of multisource generic drug products. This occurrence is mainly related to the underlying challenges evolved in topical bioequivalence documentation. Although there has been continuing regulatory efforts to present surrogate in vitro methods to clinical endpoint studies, there is still a continued need for cost- and time-efficient alternatives that account for product specificities. Hence, this work intended to expose bioequivalence assessment issues for complex topical formulations, and more specifically those related with product efficacy guidance. As a model drug and product, a bifonazole 10 mg/g cream formulation was selected and two different batches of the commercially available Reference Product (RP) were used: RP1 that displayed lower viscosity and RP4 which presented high, but not the highest, viscosity. In vitro human skin permeation testing (IVPT) was carried out and the results were evaluated by means of the traditional bioequivalence assessment approach proposed by the EMA, as well as by the Scaled Average Bioequivalence assessment approach proposed by the FDA. Based on previous experience, there was an expectation of a high level of variability in the results, thus alternative methods to evaluate local drug skin availability were developed. More specifically, an infected skin disease model, where ex vivo human skin was infected and ATP levels were used as a biological marker for monitoring antifungal activity after product application. The results showed that permeation equivalence could not be supported between the different RP batches. In contrast, this statistical difference between the formulation batches was not indicated in the disease model. Nevertheless, in pivotal IVPT studies, the lowest permeant formulation (RP4) evidenced a higher antifungal in vitro activity as reported by the lower levels of ATP. A critical appraisal of the results is likewise presented, focusing on an outlook of the real applicability of the regulatory guidances on this subject.


Asunto(s)
Antifúngicos , Absorción Cutánea , Piel , Equivalencia Terapéutica , Humanos , Antifúngicos/farmacocinética , Antifúngicos/administración & dosificación , Piel/metabolismo , Administración Cutánea , Viscosidad , Técnicas In Vitro , Crema para la Piel/farmacocinética , Crema para la Piel/administración & dosificación
8.
Food Chem ; 441: 138338, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38194794

RESUMEN

This study focuses on the characterisation and incorporation of Moringa oleifera leaf powder (MOP) from Luanda (Angola) and its extract (MOE) in fortified chocolate mousse. Dark green (DG) leaves presented superior nutritional values compared to other leaves. DG contained a higher concentration of mineral salts (10 ± 1 mg/100 g of dry leaves), phenolic compounds (267 ± 4 mg GAE/g), vitamins (1.9 ± 0.2 mg/g of dry extract) and strong antioxidant capacity (IC50, 115 ± 8 µg/mL). Therefore, DG leaves were used to fortify the chocolate mousse. The leaves were prepared in three samples: control, 2 % MOP (w/w) and 2 % MOE (v/v). Textural and rheological analysis of chocolate mousse samples revealed a pseudoplastic profile for all samples, with decreased texture attributes and viscosity due to the incorporation. The sensory evaluation demonstrated that MOP and MOE samples presented 93 % and 88 % resemblance to the original product regarding general acceptance, respectively.


Asunto(s)
Chocolate , Moringa oleifera , Extractos Vegetales , Polvos , Hojas de la Planta , Vitaminas
9.
Eur J Pharm Biopharm ; 195: 114174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160986

RESUMEN

Over the last years, the pharmaceutical industry has faced real challenges regarding quality assurance. In this context, the establishment of more holistic approaches to the pharmaceutical development has been encouraged. The emergence of the Quality by Design (QbD) paradigm as systematic, scientific and risk-based methodology introduced a new concept of pharmaceutical quality. In essence, QbD can be interpreted as a strategy to maximize time and cost savings. An in-depth understanding of the formulation and manufacturing process is demanded to optimize the safety, efficacy and quality of a drug product at all stages of development. This innovative approach streamlines the pharmaceutical Research and Development (R&D) process, provides greater manufacturing flexibility and reduces regulatory burden. To assist in QbD implementation, International Conference on Harmonisation (ICH), U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) organized and launched QbD principles in their guidance for industry, identifying key concepts and tools to design and develop a high-quality drug product. Despite the undeniable advantages of the QbD approach, and the widespread information on QbD regulatory expectations, its full implementation in the pharmaceutical field is still limited. The present review aims to establish a crosswise overview on the current application status of QbD within the framework of the ICH guidelines (ICH Q8(R2) - Q14 and ICH Q2(R2)). Moreover, it outlines the way information gathered from the QbD methodology is being harmonized in Marketing Authorization Applications (MAAs) for European market approval. This work also highlights the challenges that hinder the deployment of the QbD strategy as a standard practice.


Asunto(s)
Desarrollo de Medicamentos , Industria Farmacéutica , Industria Farmacéutica/métodos , Estados Unidos , United States Food and Drug Administration
10.
Int J Pharm ; 646: 123393, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37717717

RESUMEN

The present study aims to outline a rational framework for the design and development of a 1.0% (w/v) hydrocortisone nanocrystal-based formulation, resorting to a simple, efficient, and scalable nanonization methodology, based on the high-pressure homogenization (HPH) technique. Accordingly, the innovative product was comprehensively optimized following a Quality by Design (QbD) approach. The thorough selection of formulation composition was driven by a dual purpose: improving skin permeation and stability. In the early stage of development, a Failure Mode, Effects and Criticality Analysis (FMECA) diagram was employed to identify the most impactful variables for the critical quality attributes (CQAs). In this sense, a rotatable, three-factor and five-level circumscribed central composite design (CCCD) was applied to investigate how squalene concentration (x1), soluplus concentration (x2) and HPH-time (x3) influence physicochemical properties, performance and physical stability of the formulation. A robust Design Space (DS) was defined, establishing the optimal settings for the critical variables, whose combination meets the requirements set in the quality target product profile (QTPP). Morphological analysis revealed the cuboidal shape of hydrocortisone nanocrystals. In what concerns colloidal properties, the most promising formulation disclosed a small particle size (Dx(50) = 311.8 ± 1.5 nm), along with narrow size distribution (span value = 1.91 ± 0.17). Zeta potential results (-2.19 ± 0.15 mV--12.1 ± 0.4 mV) suggested a steric hindrance stabilization. FTIR spectra showed no chemical interactions between drug and formulation components. XRD diffractograms confirmed loss of crystallinity during the downsizing process. In vitro studies revealed an improvement on drug release rate (316 ± 21-516 ± 35 µg/cm2/√t), compared to the coarse suspension and commercial products, and a straight dependence on the stabilizer concentration and HPH time. The permeation flux across the skin (0.16 ± 0.02-1.2 ± 0.5 µg/cm2/h) appeared to be dependent on the drug physicochemical properties, in particular saturation solubility. Further characterization of the experimental formulations pointed out the role of the stabilizing component to prevent against physical instability phenomena. This organic solvent-free, and therefore "green" nanocrystal production technology offers great potential for pharmaceutical R&D and drug delivery by enabling the development of new forms of conventional drugs with optimal physicochemical properties and performance.

11.
Crit Rev Anal Chem ; : 1-42, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665603

RESUMEN

The need for consistency in analytical method development reinforces the dependence of pharmaceutical product development and manufacturing on robust analytical data. The Analytical Quality by Design (AQbD), akin to the product Quality by Design (QbD) endows a high degree of confidence to the method quality developed. AQbD involves the definition of the analytical target profile as starting point, followed by the identification of critical method variables and critical analytical attributes, supported on risk assessment and design of experiment tools for the establishment of a method operable design region and control strategy of the method. This systematic approach moves away from reactive troubleshooting to proactive failure reduction. The objective of this review is to highlight the elements of the AQbD framework and provide an overview of their implementation status in various analytical methods used in the pharmaceutical field. These methodologies include but are not limited to, high-performance liquid chromatography, UV-Vis spectrophotometry, capillary electrophoresis, supercritical fluid chromatography, and high-performance thin-layer chromatography. Finally, a critical appraisal is provided to highlight how regulators have encouraged AQbD principles application to boost the prevention of method failures and a better understanding of the method operable design region (MODR) and control strategy, ultimately resulting in cost-effectiveness and regulatory flexibility.

12.
Drug Deliv Transl Res ; 13(12): 3169-3191, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37574500

RESUMEN

Glioblastoma (GB) is one of the most lethal types of neoplasms. Its biologically aggressive nature and the presence of the blood-brain barrier (BBB) limit the efficacy of standard therapies. Several strategies are currently being developed to both overcome the BBB and deliver drugs site specifically to tumor cells. This work hypothesizes a two-pronged approach to tackle GB: drug repurposing with celecoxib (CXB) and a nanoformulation using ultra-small nanostructured lipid carriers (usNLCs). CXB antitumor druggable activity was inspected bioinformatically and screened in four glioma cell lines aiming at the comparison with temozolomide (TMZ), as standard of care. Delving into formulation design, it was tailored aiming at (i) improving the drug solubility/loading properties, (ii) assigning a thermal-triggerable drug release based on a lipid matrix with a low melting point, and (iii) enhancing the cytotoxic effect by selecting a template targetable to tumor cells. For this purpose, an integrated analysis of the critical material attributes (CMAs), critical process parameters (CPPs), and critical quality attributes (CQAs) was conducted under the umbrella of a quality by design approach. CMAs that demonstrate a high-risk level for the final quality and performance of the usNLCs include the drug solubility in lipids (solid and liquid), the lipid composition (envisioning a thermoresponsive approach), the ratio between lipids (solid vs. liquid), and the surfactant type and concentration. Particle size was shown to be governed by the interaction lipid-surfactant followed by surfactant type. The drug encapsulation did not influence colloidal characteristics, making it a promising carrier for lipophilic drugs. In general, usNLCs exhibited a controlled drug release during the 72 h at 37 °C with a final release of ca. 25%, while at 45 °C this was doubled. The in vitro cellular performance depended on the surfactant type and lipid composition, with the formulations containing a sole solid lipid (Suppocire® NB) and Kolliphor® RH40 as surfactant being the most cytotoxic. usNLCs with an average diameter of ca. 70 nm and a narrow size distribution (PdI lower than 0.2) were yielded, exhibiting high stability, drug protection, sustained and thermo-sensitive release properties, and high cytotoxicity to glioma cells, meeting the suitable CQAs for parenteral administration. This formulation may pave the way to a multi-addressable purpose to improve GB treatment.


Asunto(s)
Antineoplásicos , Glioblastoma , Glioma , Nanoestructuras , Humanos , Glioblastoma/tratamiento farmacológico , Portadores de Fármacos/uso terapéutico , Preparaciones de Acción Retardada/uso terapéutico , Reposicionamiento de Medicamentos , Lípidos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Liberación de Fármacos , Tensoactivos , Tamaño de la Partícula
13.
Pharmaceutics ; 15(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513997

RESUMEN

Analytical method validation ensures that a method provides trustworthy information about a particular sample when applied in accordance with the predefined protocol. According to regulatory standards, the rheological characteristics of topically applied semisolid formulations are one of the key elements involved in microstructure equivalence documentation. Therefore, for generic drug product manufacturers, it is a dire need to take a step forward in rheology method development and validation procedures. This paper aims to apply Analytical Quality by Design (AQbD) principles towards the development and validation of rheology methods for topical creams, as complex semisolid formulations. Risk assessment was carried out through an Ishikawa diagram and an estimate failure mode, effects, and criticality analysis (FMECA). Sample application, peltier temperature control, and sample rest time were identified as critical method variables (CMVs), and a 23 full factorial design was applied to understand their impact on rotational, creep recovery and, oscillatory measurements. The development of the method was carried out as per the ICH Q8-Q10, and Q14 guidelines and validated according to ICH Q2 (R2) guideline. The method demonstrated adequate precision (RSD < 15%), as well as selectivity. AQbD provided a comprehensive framework for developing a reliable and effective rheology method for this type of formulation.

14.
Int J Pharm ; 643: 123255, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37482227

RESUMEN

The buccal mucosa is arising within the pharmaceutical landscape as an attractive option for local and systemic drug delivery, mostly due to its high vascularization, inherent permeability and robustness. Still, one of the major challenges in bringing oromucosal preparations to market remains the accurate evaluation of permeability. During pre-clinical drug development, in vitro permeation assessment is essential, and methodologies, based on the selection of a proper membrane in a diffusion cell, have become appealing alternatives to the conventional cell-based models. The development of such methods is being constrained by the number of variables - related to study conditions, setup and formulation - that need to be optimized to accurately estimate buccal permeation. The gap of knowledge over the mentioned variables may lead to long costly developments and poorly accurate methods, especially if the empirical analytical approach is used. In this paper, a systematic risk-based analytical quality by design approach was applied to the development of a buccal in vitro permeation method, ensuring that all sources of variability affecting permeation process were identified, explained and managed by appropriate measures. Researchers are guided through a step by step model, successfully demonstrating with experimental data the impact of critical variables on method's performance.


Asunto(s)
Sistemas de Liberación de Medicamentos , Mucosa Bucal , Administración Bucal , Difusión , Preparaciones Farmacéuticas , Permeabilidad , Sistemas de Liberación de Medicamentos/métodos
15.
Cancers (Basel) ; 15(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37370767

RESUMEN

The most aggressive primary malignant brain tumor in adults is glioblastoma (GBM), which has poor overall survival (OS). There is a high relapse rate among patients with GBM despite maximally safe surgery, radiation therapy, temozolomide (TMZ), and aggressive treatment. Hence, there is an urgent and unmet clinical need for new approaches to managing GBM. The current study identified modules (MYC, EGFR, PIK3CA, SUZ12, and SPRK2) involved in GBM disease through the NeDRex plugin. Furthermore, hub genes were identified in a comprehensive interaction network containing 7560 proteins related to GBM disease and 3860 proteins associated with signaling pathways involved in GBM. By integrating the results of the analyses mentioned above and again performing centrality analysis, eleven key genes involved in GBM disease were identified. ProteomicsDB and Gliovis databases were used for determining the gene expression in normal and tumor brain tissue. The NetworkAnalyst and the mGWAS-Explorer tools identified miRNAs, SNPs, and metabolites associated with these 11 genes. Moreover, a literature review of recent studies revealed other lists of metabolites related to GBM disease. The enrichment analysis of identified genes, miRNAs, and metabolites associated with GBM disease was performed using ExpressAnalyst, miEAA, and MetaboAnalyst tools. Further investigation of metabolite roles in GBM was performed using pathway, joint pathway, and network analyses. The results of this study allowed us to identify 11 genes (UBC, HDAC1, CTNNB1, TRIM28, CSNK2A1, RBBP4, TP53, APP, DAB1, PINK1, and RELN), five miRNAs (hsa-mir-221-3p, hsa-mir-30a-5p, hsa-mir-15a-5p, hsa-mir-130a-3p, and hsa-let-7b-5p), six metabolites (HDL, N6-acetyl-L-lysine, cholesterol, formate, N, N-dimethylglycine/xylose, and X2. piperidinone) and 15 distinct signaling pathways that play an indispensable role in GBM disease development. The identified top genes, miRNAs, and metabolite signatures can be targeted to establish early diagnostic methods and plan personalized GBM treatment strategies.

16.
Eur J Pharm Biopharm ; 185: 94-106, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36806630

RESUMEN

In recent years, the regulatory mechanisms for topical generic product bioequivalence (BE) assessment have been subjected to noteworthy changes, with the FDA issuing product specific guidances, and the EMA adopting a more universal approach with the quality and equivalence of topical products draft guideline. The agencies advise on a modular strategy for BE documentation. Nevertheless, their scope, data analysis and criteria are rather distinct. This study aims to tackle bioequivalence assessment issues of complex topical formulations starting by statistical implications of the EMA/FDA approaches concerning the documentation of qualitative (Q1), quantitative (Q2), microstructure (Q3) and performance requirements (Q4). As a model drug product, a bifonazole 10 mg/g cream formulation was selected. For this specific formulation, the commercially available Reference Product (RP) was compared with two comparator products, also commercially available, referred to as comparator product A (CPA) and comparator product B (CPB). The former displays Q1 sameness and Q2 differences, whilst CPB is categorically considered as Q1/Q2 different. Furthermore, intending to establish a regulatory rationale for the submission of a generic product according to the updated regulatory requirements, the RP was likewise compared with a Test Product (TP). This formulation was designed to display equal Q1/Q2 profile to that of the RP. Validated rheology and in vitro release test (IVRT) methods were used to infer on Q3/Q4 characteristics. During rheology studies, statistically significant RP batch to batch differences were observed. Therefore, in an attempt to surpass this heterogeneity, the initial pool of RP batches was expanded to include RP product batches at different lifecycle stages. Despite this effort, it was not possible to classify the RP/TP, RP/CPA or RP/CPB as rheologically equivalent products. Nevertheless, product performance results, retrieved from IVRT, were able to sustain equivalence between the RP and the formulations exhibiting Q1 sameness (TP and CPA). It should however be mentioned, that for some RP batch combinations, the IVRT results failed to demonstrate equivalence according to the EMA requirements. Enlarging the RP batch pool was then a critical step in further understanding an optimum statistical approach for establishing equivalence in product performance. This study highlights the need to that a 'one-fits-all approach' may not be an optimum path way for establishing the regulatory strategy and requirements to support generic product bioequivalence.


Asunto(s)
Antifúngicos , Medicamentos Genéricos , Equivalencia Terapéutica , Medicamentos Genéricos/química , Técnicas In Vitro , Reología
17.
Pharmaceutics ; 14(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36559075

RESUMEN

Essential oils' therapeutic potential is highly recognized, with many applications rising due to reported anti-inflammatory, cardioprotective, neuroprotective, anti-aging, and anti-cancer effects. Nevertheless, clinical translation still remains a challenge, mainly due to essential oils' volatility and low water solubility and stability. The present review gathers relevant information and postulates on the potential application of plant nanovesicles to effectively deliver essential oils to target organs. Indeed, plant nanovesicles are emerging as alternatives to mammalian vesicles and synthetic carriers due to their safety, stability, non-toxicity, and low immunogenicity. Moreover, they can be produced on a large scale from various plant parts, enabling an easier, more rapid, and less costly industrial application that could add value to waste products and boost the circular economy. Importantly, the use of plant nanovesicles as delivery platforms could increase essential oils' bioavailability and improve chemical stability while reducing volatility and toxicity issues. Additionally, using targeting strategies, essential oils' selectivity, drug delivery, and efficacy could be improved, ultimately leading to dose reduction and patient compliance. Bearing this in mind, information on current pharmaceutical technologies available to enable distinct routes of administration of loaded vesicles is also discussed.

18.
Biochem Pharmacol ; 206: 115300, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36261067

RESUMEN

Major depressive disorder (MDD) is a debilitating mental illness. For years, the research and development of drugs to be used in MDD focused on the monoaminergic system, leading to the introduction in the market of tricyclic antidepressants, selective serotonin/noradrenaline reuptake inhibitors and monoamine oxidase inhibitors. Nonetheless, patients continue to experience low remission rates, frequent relapses and persistent functional impairment. These drawbacks emphasize the need to studying alternative therapeutic targets in order to improve depression treatment efficacy. Herein, ascorbate role in the pathophysiology of MDD is discussed, particularly through the modulation of the glutamatergic system. Moreover, preclinical and clinical data regarding its antidepressant effect in affective disorders is reviewed. The electronic database Pubmed was searched from 2005 to the present date, using the following keywords: "ascorbate", "glutamate", "major depressive disorder", "depression", "ascorbic acid", and "vitamin C". Overall, 31 studies were retrieved, evidencing ascorbate efficacy on reversing depressive symptoms associated with MDD through the modulation of glutamatergic signalling, namely through the l-Arginine-NO-cGMP pathway. The present review supports the high potential of ascorbate in the research of new treatment strategies for MDD and it is expected to be very useful for the development of new target-antidepressant drugs.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Antioxidantes/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Inhibidores Selectivos de la Recaptación de Serotonina , Antidepresivos Tricíclicos
19.
Int J Pharm ; 628: 122265, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36216166

RESUMEN

Allergic contact dermatitis (ACD) is the most prevalent occupational disease and the most common form of immunotoxicity in humans. Preventing exposure to the triggering allergens is the mainstay of treatment. However, avoidance is not always possible in an occupational setting. From a pathophysiological point of view, a variety of events are involved in the development of ACD, including the formation of immunogenic complexes following the stable association of the allergen with skin proteins, which is thought to be the molecular initiating event responsible for the development of ACD. Previously, the team identified molecules that exhibited higher antiallergic potential due to their capacity to block the interaction between allergens and skin proteins. These assumptions were the starting point for the design of this work aiming to develop and characterize a new hydrogel containing the active ingredients lysine and N-acetyl cysteine under the premises of quality- and safety- by design. Two factorial plannings were established envisioning the optimization of the hydrogel in terms of mechanical and rheological properties. In vitro release and permeation studies supported its skin surface barrier effect. In addition, the selected hydrogel proved to be safe without causing human skin irritation or skin sensitization.


Asunto(s)
Dermatitis Alérgica por Contacto , Hidrogeles , Humanos , Dermatitis Alérgica por Contacto/prevención & control , Alérgenos , Piel
20.
Int J Pharm ; 620: 121705, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35358644

RESUMEN

Documenting topical bioequivalence can be an extremely complex process, which is intrinsically dependent on the formulation technological features. According to EMA guideline, for simple formulations, BE may be demonstrated by documenting the qualitative (Q1), quantitative (Q2), microstructure (Q3) and performance (Q4) equivalence. Nevertheless, when addressing complex semisolids, equivalence regarding local availability should also be demonstrated. The purpose of this study is to pursue this strategy using two opposite scenarios: a simple dimetindene maleate 1 mg/g gel formulation and a diclofenac diethylammonium 23.2 mg/g emulgel, representing a complex formulation. For both formulations, Q1/Q2 test (TP) and reference products (RP) were used. Rheology, in vitro release (IVRT) and in vitro permeation methods (IVPT) were developed and validated for both products. For the dimetindene formulation, equivalence pertaining to Q4 was established. However, high variability was observed for some rheology endpoints, especially for the different RP batches. Therefore, equivalence could not be established for Q3 as per EMA requirements. Can some rheology endpoints be waived? Can we establish reasonable criteria that are overall feasible for generic manufacturers and at the same time safe for the patient? An attempt was made to propose a wider acceptance range based on the inter-batch variability of the RP. For that, the rationale presented in the EMA guideline on bioequivalence for highly variable products was used. For the diclofenac formulation, Q3 equivalence was likewise not established. Q4 equivalence was only found for some batch combinations and when applying a wider acceptance criterion (75-133%). Furthermore, IVPT equivalence also failed to be demonstrated. Nevertheless, since the TP displays an equivalent pharmacokinetic profile compared to the RP, the observed Q3, Q4 and local availability differences are not expected to be clinically significant. This study draws attention to an effective search to determine the most appropriate strategy for assessing topical bioequivalence on a case-by-case basis.


Asunto(s)
Diclofenaco , Dimetindeno , Diclofenaco/química , Medicamentos Genéricos , Humanos , Técnicas In Vitro , Equivalencia Terapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA