Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Commun ; 15(1): 6237, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39043693

RESUMEN

Medulloblastomas (MBs) are malignant pediatric brain tumors that are molecularly and clinically heterogenous. The application of omics technologies-mainly studying nucleic acids-has significantly improved MB classification and stratification, but treatment options are still unsatisfactory. The proteome and their N-glycans hold the potential to discover clinically relevant phenotypes and targetable pathways. We compile a harmonized proteome dataset of 167 MBs and integrate findings with DNA methylome, transcriptome and N-glycome data. We show six proteome MB subtypes, that can be assigned to two main molecular programs: transcription/translation (pSHHt, pWNT and pG3myc), and synapses/immunological processes (pSHHs, pG3 and pG4). Multiomic analysis reveals different conservation levels of proteome features across MB subtypes at the DNA methylome level. Aggressive pGroup3myc MBs and favorable pWNT MBs are most similar in cluster hierarchies concerning overall proteome patterns but show different protein abundances of the vincristine resistance-associated multiprotein complex TriC/CCT and of N-glycan turnover-associated factors. The N-glycome reflects proteome subtypes and complex-bisecting N-glycans characterize pGroup3myc tumors. Our results shed light on targetable alterations in MB and set a foundation for potential immunotherapies targeting glycan structures.


Asunto(s)
Meduloblastoma , Polisacáridos , Proteoma , Meduloblastoma/metabolismo , Meduloblastoma/genética , Humanos , Polisacáridos/metabolismo , Proteoma/metabolismo , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/genética , Metilación de ADN , Transcriptoma , Niño , Proteómica/métodos , Femenino , Regulación Neoplásica de la Expresión Génica , Masculino , Preescolar , Perfilación de la Expresión Génica/métodos
2.
J Pediatr Pharmacol Ther ; 29(3): 273-277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863855

RESUMEN

OBJECTIVE: Pediatric poison exposures are a common reason for pediatric intensive care unit (PICU) -admission. The purpose of this study was to examine the exposure trends and patient outcomes in 2018-2019 compared with 2020-2021 amidst the COVID-19 pandemic. METHODS: This was a retrospective cohort study of patients 18 years of age or younger with a suspected toxicologic exposure from January 2018 to March 2021. The primary endpoint was rate of PICU admissions between the 2 cohorts. Secondary endpoints included medical outcome stratified by severity, PICU length of stay, and need for mechanical ventilation. RESULTS: Our study included a total of 340 patients with median age 14.5 (IQR, 11.9-16.1) years. There was no significant difference in age, sex, or race between the 2 cohorts. The percentage of patients admitted to the PICU for poison exposures was significantly higher in the COVID-19 cohort compared with the pre-COVID-19 cohort (8.4% vs 3.7%, p < 0.01). Severity of medical outcomes differed between the groups; the COVID-19 cohort had more extreme clinical presentations of no effect or death (p < 0.01). No significant difference was found among the remaining secondary outcomes. Classes of substances ingested were comparable with baseline poison center data. CONCLUSIONS: Poisoning-related PICU admissions occurred at more than twice the pre-pandemic rate. This may emphasize the effect of the COVID-19 pandemic on pediatric access and exposure to poisons.

3.
Cancers (Basel) ; 16(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927982

RESUMEN

BACKGROUND: Remarkable differences exist in the outcome of systemic cancer therapies. Lymphomas and leukemias generally respond well to systemic chemotherapies, while solid cancers often fail. We engineered different human cancer cells lines to uniformly express a modified herpes simplex virus thymidine kinase TK.007 as a suicide gene when ganciclovir (GCV) is applied, thus in theory achieving a similar response in all cell lines. METHODS: Fifteen different cell lines were engineered to express the TK.007 gene. XTT-cell proliferation assays were performed and the IC50-values were calculated. Functional kinome profiling, mRNA sequencing, and bottom-up proteomics analysis with Ingenuity pathway analysis were performed. RESULTS: GCV potency varied among cell lines, with lymphoma and leukemia cells showing higher susceptibility than solid cancer cells. Functional kinome profiling implies a contribution of the SRC family kinases and decreased overall kinase activity. mRNA sequencing highlighted alterations in the MAPK pathways and bottom-up proteomics showed differences in apoptotic and epithelial junction signaling proteins. CONCLUSIONS: The histogenetic origin of cells influenced the susceptibility of human malignant cells towards cytotoxic agents with leukemias and lymphomas being more sensitive than solid cancer cells.

4.
Cell Mol Life Sci ; 81(1): 224, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769196

RESUMEN

Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment. For this, we performed Liquid Chromatography coupled to Mass Spectrometry (LC-MS)-based proteomics of synaptosomes isolated from the ipsilateral hemispheres of mice subjected to experimental stroke at different time points (24 h, 4 and 7 days) and compared them to sham-operated mice. Proteomic analyses indicated that, among the differentially expressed proteins between the two groups, cystatin C (CysC) was significantly increased at 24 h and 4 days following stroke, before returning to steady-state levels at 7 days, thus indicating a potential transient and intrinsic rescue mechanism attempt of neurons. When CysC was applied to primary neuronal cultures subjected to an in vitro model of ischemic damage, this treatment significantly improved the preservation of synaptic structures. Notably, similar effects were observed when CysC was loaded into brain-derived extracellular vesicles (BDEVs). Finally, when CysC contained in BDEVs was administered intracerebroventricularly to stroked mice, it significantly increased the expression of synaptic markers such as SNAP25, Homer-1, and NCAM in the penumbra area compared to the group supplied with empty BDEVs. Thus, we show that CysC-loaded BDEVs promote synaptic protection after ischemic damage in vitro and in vivo, opening the possibility of a therapeutic use in stroke patients.


Asunto(s)
Isquemia Encefálica , Encéfalo , Cistatina C , Vesículas Extracelulares , Ratones Endogámicos C57BL , Sinapsis , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Cistatina C/metabolismo , Sinapsis/metabolismo , Ratones , Masculino , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Proteómica/métodos , Sinaptosomas/metabolismo , Neuronas/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia , Células Cultivadas , Modelos Animales de Enfermedad
5.
Nat Commun ; 15(1): 4513, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802361

RESUMEN

Urothelial bladder cancer (UC) has a wide tumor biological spectrum with challenging prognostic stratification and relevant therapy-associated morbidity. Most molecular classifications relate only indirectly to the therapeutically relevant protein level. We improve the pre-analytics of clinical samples for proteome analyses and characterize a cohort of 434 samples with 242 tumors and 192 paired normal mucosae covering the full range of UC. We evaluate sample-wise tumor specificity and rank biomarkers by target relevance. We identify robust proteomic subtypes with prognostic information independent from histopathological groups. In silico drug prediction suggests efficacy of several compounds hitherto not in clinical use. Both in silico and in vitro data indicate predictive value of the proteomic clusters for these drugs. We underline that proteomics is relevant for personalized oncology and provide abundance and tumor specificity data for a large part of the UC proteome ( www.cancerproteins.org ).


Asunto(s)
Biomarcadores de Tumor , Proteómica , Neoplasias de la Vejiga Urinaria , Humanos , Proteómica/métodos , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Biomarcadores de Tumor/metabolismo , Proteoma/metabolismo , Femenino , Masculino , Urotelio/patología , Urotelio/metabolismo , Anciano , Pronóstico , Persona de Mediana Edad , Anciano de 80 o más Años
6.
J Exp Clin Cancer Res ; 43(1): 110, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605423

RESUMEN

BACKGROUND: Metastasis is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC) patients. We previously showed that low HERC5 expression predicts early tumor dissemination and a dismal prognosis in NSCLC patients. Here, we performed functional studies to unravel the mechanism underlying the "metastasis-suppressor" effect of HERC5, with a focus on mitochondrial metabolism pathways. METHODS: We assessed cell proliferation, colony formation potential, anchorage-independent growth, migration, and wound healing in NSCLC cell line models with HERC5 overexpression (OE) or knockout (KO). To study early tumor cell dissemination, we used these cell line models in zebrafish experiments and performed intracardial injections in nude mice. Mass spectrometry (MS) was used to analyze protein changes in whole-cell extracts. Furthermore, electron microscopy (EM) imaging, cellular respiration, glycolytic activity, and lactate production were used to investigate the relationships with mitochondrial energy metabolism pathways. RESULTS: Using different in vitro NSCLC cell line models, we showed that NSCLC cells with low HERC5 expression had increased malignant and invasive properties. Furthermore, two different in vivo models in zebrafish and a xenograft mouse model showed increased dissemination and metastasis formation (in particular in the brain). Functional enrichment clustering of MS data revealed an increase in mitochondrial proteins in vitro when HERC5 levels were high. Loss of HERC5 leads to an increased Warburg effect, leading to improved adaptation and survival under prolonged inhibition of oxidative phosphorylation. CONCLUSIONS: Taken together, these results indicate that low HERC5 expression increases the metastatic potential of NSCLC in vitro and in vivo. Furthermore, HERC5-induced proteomic changes influence mitochondrial pathways, ultimately leading to alterations in energy metabolism and demonstrating its role as a new potential metastasis suppressor gene.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Pez Cebra , Regulación hacia Abajo , Ratones Desnudos , Proteómica , Metabolismo Energético , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
7.
Acta Neuropathol ; 147(1): 21, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244080

RESUMEN

The longitudinal transition of phenotypes is pivotal in glioblastoma treatment resistance and DNA methylation emerged as an important tool for classifying glioblastoma phenotypes. We aimed to characterize DNA methylation subclass heterogeneity during progression and assess its clinical impact. Matched tissues from 47 glioblastoma patients were subjected to DNA methylation profiling, including CpG-site alterations, tissue and serum deconvolution, mass spectrometry, and immunoassay. Effects of clinical characteristics on temporal changes and outcomes were studied. Among 47 patients, 8 (17.0%) had non-matching classifications at recurrence. In the remaining 39 cases, 28.2% showed dominant DNA methylation subclass transitions, with 72.7% being a mesenchymal subclass. In general, glioblastomas with a subclass transition showed upregulated metabolic processes. Newly diagnosed glioblastomas with mesenchymal transition displayed increased stem cell-like states and decreased immune components at diagnosis and exhibited elevated immune signatures and cytokine levels in serum. In contrast, tissue of recurrent glioblastomas with mesenchymal transition showed increased immune components but decreased stem cell-like states. Survival analyses revealed comparable outcomes for patients with and without subclass transitions. This study demonstrates a temporal heterogeneity of DNA methylation subclasses in 28.2% of glioblastomas, not impacting patient survival. Changes in cell state composition associated with subclass transition may be crucial for recurrent glioblastoma targeted therapies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Metilación de ADN , Recurrencia Local de Neoplasia/genética , Análisis de Supervivencia
8.
Nat Commun ; 15(1): 45, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167725

RESUMEN

Dietary polyunsaturated fatty acids (PUFA) are increasingly recognized for their health benefits, whereas a high production of endogenous fatty acids - a process called de novo lipogenesis (DNL) - is closely linked to metabolic diseases. Determinants of PUFA incorporation into complex lipids are insufficiently understood and may influence the onset and progression of metabolic diseases. Here we show that fatty acid synthase (FASN), the key enzyme of DNL, critically determines the use of dietary PUFA in mice and humans. Moreover, the combination of FASN inhibition and PUFA-supplementation decreases liver triacylglycerols (TAG) in mice fed with high-fat diet. Mechanistically, FASN inhibition causes higher PUFA uptake via the lysophosphatidylcholine transporter MFSD2A, and a diacylglycerol O-acyltransferase 2 (DGAT2)-dependent incorporation of PUFA into TAG. Overall, the outcome of PUFA supplementation may depend on the degree of endogenous DNL and combining PUFA supplementation and FASN inhibition might be a promising approach to target metabolic disease.


Asunto(s)
Ácidos Grasos Omega-3 , Enfermedades Metabólicas , Ratones , Humanos , Animales , Lipogénesis , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados , Triglicéridos/metabolismo , Ácidos Grasos , Dieta Alta en Grasa/efectos adversos
9.
STAR Protoc ; 5(1): 102793, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157295

RESUMEN

Here, we present a protocol for differential multi-omic analyses of distinct cell types in the developing mouse cerebral cortex. We describe steps for in utero electroporation, subsequent flow-cytometry-based isolation of developing mouse cortical cells, bulk RNA sequencing or quantitative liquid chromatography-tandem mass spectrometry, and bioinformatic analyses. This protocol can be applied to compare the proteomes and transcriptomes of developing mouse cortical cell populations after various manipulations (e.g., epigenetic). For complete details on the use and execution of this protocol, please refer to Meka et al. (2022).1.


Asunto(s)
Biología Computacional , Multiómica , Animales , Ratones , Cromatografía Liquida , Electroporación , Corteza Cerebral
10.
Neuro Oncol ; 26(5): 935-949, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38158710

RESUMEN

BACKGROUND: Embryonal tumors with multilayered rosettes (ETMR) are rare malignant embryonal brain tumors. The prognosis of ETMR is poor and novel therapeutic approaches are desperately needed. Comprehension of ETMR tumor biology is currently based on only few previous molecular studies, which mainly focused on the analyses of nucleic acids. In this study, we explored integrated ETMR proteomics. METHODS: Using mass spectrometry, proteome data were acquired from 16 ETMR and the ETMR cell line BT183. Proteome data were integrated with case-matched global DNA methylation data, publicly available transcriptome data, and proteome data of further embryonal and pediatric brain tumors. RESULTS: Proteome-based cluster analyses grouped ETMR samples according to histomorphology, separating neuropil-rich tumors with neuronal signatures from primitive tumors with signatures relating to stemness and chromosome organization. Integrated proteomics showcased that ETMR and BT183 cells harbor proteasome regulatory proteins in abundance, implicating their strong dependency on the proteasome machinery to safeguard proteostasis. Indeed, in vitro assays using BT183 highlighted that ETMR tumor cells are highly vulnerable toward treatment with the CNS penetrant proteasome inhibitor Marizomib. CONCLUSIONS: In summary, histomorphology stipulates the proteome signatures of ETMR, and proteasome regulatory proteins are pervasively abundant in these tumors. As validated in vitro, proteasome inhibition poses a promising therapeutic option in ETMR.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de Células Germinales y Embrionarias , Complejo de la Endopetidasa Proteasomal , Proteómica , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica/métodos , Neoplasias de Células Germinales y Embrionarias/metabolismo , Neoplasias de Células Germinales y Embrionarias/patología , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Proteoma/metabolismo , Proteoma/análisis , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Inhibidores de Proteasoma/farmacología , Metilación de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA