Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Evol Appl ; 15(12): 2010-2027, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36540633

RESUMEN

Habitat fragmentation impacts the distribution of genetic diversity and population genetic structure. Therefore, protecting the evolutionary potential of species, especially in the context of the current rate of human-induced environmental change, is an important goal. In riverine ecosystems, migration barriers affect the genetic structure of native species, while also influencing the spread of invasive species. In this study, we compare genetic patterns of two native and one highly invasive riverine fish species in a Belgian river basin, namely the native three-spined stickleback (Gasterosteus aculeatus) and stone loach (Barbatula barbatula), and the non-native and invasive topmouth gudgeon (Pseudorasbora parva). We aimed to characterize both natural and anthropogenic determinants of genetic diversity and population genetic connectivity. Genetic diversity was highest in topmouth gudgeon, followed by stone loach and three-spined stickleback. The correlation between downstream distance and genetic diversity, a pattern often observed in riverine systems, was only marginally significant in stone loach and three-spined stickleback, while genetic diversity strongly declined with increasing number of barriers in topmouth gudgeon. An Isolation-By-Distance pattern characterizes the population genetic structure of each species. Population differentiation was only associated with migration barriers in the invasive topmouth gudgeon, while genetic composition of all species seemed at least partially determined by the presence of migration barriers. Among the six barrier types considered (watermills, sluices, tunnels, weirs, riverbed obstructions, and others), the presence of watermills was the strongest driver of genetic structure and composition. Our results indicate that conservation and restoration actions, focusing on conserving genetic patterns, cannot be generalized across species. Moreover, measures might target either on restoring connectivity, while risking a rapid spread of the invasive topmouth gudgeon, or not restoring connectivity, while risking native species extinction in upstream populations.

2.
Parasitology ; 149(9): 1164-1172, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35570701

RESUMEN

How parasites alter host feeding ecology remains elusive in natural populations. A powerful approach to investigate the link between infection and feeding ecology is quantifying unique and shared responses to parasite infection in related host species within a common environment. Here, 9 pairs of sympatric populations of the three-spined and nine-spined stickleback fishes were sampled across a range of freshwater and brackish habitats to investigate how parasites alter host feeding ecology: (i) biotic and abiotic determinants of parasite community composition, and (ii) to what extent parasite infection correlates with trophic niche specialization of the 2 species, using stable isotope analyses (δ15N and δ13C). It was determined that parasite community composition and host parasite load varied among sites and species and were correlated with dissolved oxygen. It was also observed that the digenean Cyathocotyle sp.'s abundance, a common directly infecting parasite with a complex life cycle, correlated with host δ13C in a fish species-specific manner. In 6 sites, correlations were found between parasite abundance and their hosts' feeding ecology. These effects were location-specific and occasionally host species or host size-specific. Overall, the results suggest a relationship between parasite infection and host trophic niche which may be an important and largely overlooked ecological factor. The population specificity and variation in parasite communities also suggest this effect is multifarious and context-dependent.


Asunto(s)
Enfermedades de los Peces , Enfermedades Parasitarias , Smegmamorpha , Trematodos , Animales , Enfermedades de los Peces/parasitología , Peces , Interacciones Huésped-Parásitos , Smegmamorpha/parasitología
3.
Evol Appl ; 14(10): 2553-2567, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34745343

RESUMEN

Anthropogenic stressors, such as pollutants, act as selective factors that can leave measurable changes in allele frequencies in the genome. Metals are of particular concern among pollutants, because of interference with vital biological pathways. We use the three-spined stickleback as a model for adaptation to mercury pollution in natural populations. We collected sticklebacks from 21 locations in Flanders (Belgium), measured the accumulated levels of mercury in the skeletal muscle tissue, and genotyped the fish by sequencing (GBS). The spread of muscle mercury content across locations was considerable, ranging from 21.5 to 327 ng/g dry weight (DW). We then conducted a genome-wide association study (GWAS) between 28,450 single nucleotide polymorphisms (SNPs) and the accumulated levels of mercury, using different approaches. Based on a linear mixed model analysis, the GWAS yielded multiple hits with a single top hit on Chromosome 4, with eight more SNPs suggestive of association. A second approach, a latent factor mixed model analysis, highlighted one single SNP on Chromosome 11. Finally, an outlier test identified one additional SNP on Chromosome 4 that appeared under selection. Out of all ten SNPs we identified as associated with mercury in muscle, three SNPs all located on Chromosome 4 and positioned within a 2.5 kb distance of an annotated gene. Based on these results and the genome coverage of our SNPs, we conclude that the selective effect of mercury pollution in Flanders causes a significant association with at least one locus on Chromosome 4 in three-spined stickleback.

4.
PLoS One ; 16(9): e0257709, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34551018

RESUMEN

Larval dispersal and juvenile survival are crucial in determining variation in recruitment, stock size and adult distribution of commercially important fish. This study investigates the dispersal of early-life stages of common sole (Solea solea L.) in the southern North Sea, both empirically and through modeling. Age at different life-history events of juvenile flatfish sampled along the coasts of Belgium, the Netherlands and the United Kingdom in 2013, 2014 and 2016, was determined through the counting of daily growth rings in the otoliths. Juveniles captured between August and October were estimated to be on average 140 days old with an average pelagic larval duration of 34 days. The hatching period was estimated between early April and mid-May followed by arrival and settlement in the nurseries between May and mid-June. Growth rates were higher off the Belgian coast than in the other nursery areas, especially in 2013, possibly due to a post-settlement differentiation. Empirical pelagic larval duration and settlement distributions were compared with the Larvae&Co larval dispersal model, which combines local hydrodynamics in the North Sea with sole larval behavior. Yearly predicted and observed settlement matched partially, but the model estimated a longer pelagic phase. The observations fitted even better with the modelled average (1995-2015) distribution curves. Aberrant results for the small juvenile sole sampled along the UK coast in March 2016, led to the hypothesis of a winter disruption in the deposition of daily growth rings, potentially related to starvation and lower food availability. The similarities between measured and modelled distribution curves cross-validated both types of estimations and accredited daily ageing of juveniles as a useful method to calibrate biophysical models and to understand early-life history of fish, both important tools in support of efficient fisheries management strategies.


Asunto(s)
Peces Planos , Membrana Otolítica , Animales , Ecosistema , Explotaciones Pesqueras , Larva
5.
BMC Genomics ; 22(1): 625, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34418978

RESUMEN

BACKGROUND: Genome-wide data are invaluable to characterize differentiation and adaptation of natural populations. Reduced representation sequencing (RRS) subsamples a genome repeatedly across many individuals. However, RRS requires careful optimization and fine-tuning to deliver high marker density while being cost-efficient. The number of genomic fragments created through restriction enzyme digestion and the sequencing library setup must match to achieve sufficient sequencing coverage per locus. Here, we present a workflow based on published information and computational and experimental procedures to investigate and streamline the applicability of RRS. RESULTS: In an iterative process genome size estimates, restriction enzymes and size selection windows were tested and scaled in six classes of Antarctic animals (Ostracoda, Malacostraca, Bivalvia, Asteroidea, Actinopterygii, Aves). Achieving high marker density would be expensive in amphipods, the malacostracan target taxon, due to the large genome size. We propose alternative approaches such as mitogenome or target capture sequencing for this group. Pilot libraries were sequenced for all other target taxa. Ostracods, bivalves, sea stars, and fish showed overall good coverage and marker numbers for downstream population genomic analyses. In contrast, the bird test library produced low coverage and few polymorphic loci, likely due to degraded DNA. CONCLUSIONS: Prior testing and optimization are important to identify which groups are amenable for RRS and where alternative methods may currently offer better cost-benefit ratios. The steps outlined here are easy to follow for other non-model taxa with little genomic resources, thus stimulating efficient resource use for the many pressing research questions in molecular ecology.


Asunto(s)
Metagenómica , Proyectos de Investigación , Animales , Genoma , Genómica , Humanos , Análisis de Secuencia de ADN
6.
Food Chem Toxicol ; 154: 112329, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34116106

RESUMEN

Fishery products are often subject to substitution fraud, which is hard to trace due to a lack of morphologic traits when processed, gutted, or decapitated. Traditional molecular methods (DNA barcoding) fail to identify products containing multiple species and cannot estimate original weight percentages. As a proof of concept, an Atlantic salmon (Salmo salar) specific ddPCR assay was designed to authenticate mixed food products. The method proved to be specific and able to accurately quantify S. salar when using DNA extracts, even in the presence of DNA from closely related salmon species. The ddPCR estimates correlated well with the percentage of S. salar in artificially assembled tissue mixtures. The effect of common salmon processing techniques (freezing, smoking, poaching with a "Bellevue" recipe and marinating with a 'Gravad lax' recipe) on the ddPCR output was investigated and freezing and marinating appeared to lower the copies detected by the ddPCR. Finally, the assay was applied to 46 retail products containing Atlantic or Pacific salmon, and no indications of substitution fraud were detected. The method allows for a semi-quantitative evaluation of the S. salar content in processed food products and can rapidly screen Atlantic salmon products and flag potentially tampered samples for further investigation.


Asunto(s)
ADN/análisis , Contaminación de Alimentos/análisis , Salmo salar , Alimentos Marinos/análisis , Animales , Culinaria , Congelación , Límite de Detección , Oncorhynchus mykiss , Reacción en Cadena de la Polimerasa/métodos
7.
Evol Appl ; 14(2): 536-552, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33664793

RESUMEN

Uncertainty hampers innovative mixed-fisheries management by the scales at which connectivity dynamics are relevant to management objectives. The spatial scale of sustainable stock management is species-specific and depends on ecology, life history and population connectivity. One valuable approach to understand these spatial scales is to determine to what extent population genetic structure correlates with the oceanographic environment. Here, we compare the level of genetic connectivity in three codistributed and commercially exploited demersal flatfish species living in the North East Atlantic Ocean. Population genetic structure was analysed based on 14, 14 and 10 neutral DNA microsatellite markers for turbot, brill and sole, respectively. We then used redundancy analysis (RDA) to attribute the genetic variation to spatial (geographical location), temporal (sampling year) and oceanographic (water column characteristics) components. The genetic structure of turbot was composed of three clusters and correlated with variation in the depth of the pycnocline, in addition to spatial factors. The genetic structure of brill was homogenous, but correlated with average annual stratification and spatial factors. In sole, the genetic structure was composed of three clusters, but was only linked to a temporal factor. We explored whether the management of data poor commercial fisheries, such as in brill and turbot, might benefit from population-specific information. We conclude that the management of fish stocks has to consider species-specific genetic structures and may benefit from the documentation of the genetic seascape and life-history traits.

8.
J Fish Biol ; 99(1): 49-60, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33559136

RESUMEN

The current and projected environmental change of the Arctic Ocean contrasts sharply with the limited knowledge of its genetic biodiversity. Polar cod Boreogadus saida (Lepechin, 1774) is an abundant circumpolar marine fish and ecological key species. The central role of polar cod in the Arctic marine food web warrants a better understanding of its population structure and connectivity. In this study, the genetic population structure of 171 juveniles, collected from several fjords off West-Svalbard (Billefjorden, Hornsund and Kongsfjorden), the northern Sophia Basin and the Eurasian Basin of the Arctic Ocean, was analysed using nine DNA microsatellite loci. Genetic analyses indicated moderate to high genetic diversity, but absence of spatial population structure and isolation-by-distance, suggesting ongoing gene flow between the studied sampling regions. High levels of connectivity may be key for polar cod to maintain populations across wide spatial scales. The adaptive capacity of the species will be increasingly important to face challenges such as habitat fragmentation, ocean warming and changes in prey composition. In view of a limited understanding of the population dynamics and evolution of polar cod, a valuable next step to predict future developments should be an integrated biological evaluation, including population genomics, a life-history approach, and habitat and biophysical dispersal modelling.


Asunto(s)
Gadiformes , Flujo Génico , Animales , Regiones Árticas , Ecosistema , Svalbard
9.
J Evol Biol ; 34(1): 138-156, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32573797

RESUMEN

Studies of colonization of new habitats that appear from rapidly changing environments are interesting and highly relevant to our understanding of divergence and speciation. Here, we analyse phenotypic and genetic variation involved in the successful establishment of a marine fish (sand goby, Pomatoschistus minutus) over a steep salinity drop from 35 PSU in the North Sea (NE Atlantic) to two PSU in the inner parts of the post-glacial Baltic Sea. We first show that populations are adapted to local salinity in a key reproductive trait, the proportion of motile sperm. Thereafter, we show that genome variation at 22,190 single nucleotide polymorphisms (SNPs) shows strong differentiation among populations along the gradient. Sequences containing outlier SNPs and transcriptome sequences, mapped to a draft genome, reveal associations with genes with relevant functions for adaptation in this environment but without overall evidence of functional enrichment. The many contigs involved suggest polygenic differentiation. We trace the origin of this differentiation using demographic modelling and find the most likely scenario is that at least part of the genetic differentiation is older than the Baltic Sea and is a result of isolation of two lineages prior to the current contact over the North Sea-Baltic Sea transition zone.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Perciformes/genética , Salinidad , Motilidad Espermática , Animales , Océano Atlántico , Femenino , Variación Genética , Genoma , Masculino
10.
PLoS One ; 15(11): e0241429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33151981

RESUMEN

Marine organisms show population structure at a relatively fine spatial scale, even in open habitats. The tools commonly used to assess subtle patterns of connectivity have diverse levels of resolution and can complement each other to inform on population structure. We assessed and compared the discriminatory power of genetic markers and otolith shape to reveal the population structure on evolutionary and ecological time scales of the common sole (Solea solea), living in the Eastern English Channel (EEC) stock off France and the UK. First, we genotyped fish with Single Nucleotide Polymorphisms to assess population structure at an evolutionary scale. Then, we tested for spatial segregation of the subunits using otolith shape as an integrative tracer of life history. Finally, a supervised machine learning framework was applied to genotypes and otolith phenotypes to probabilistically assign adults to subunits and assess the discriminatory power of each approach. Low but significant genetic differentiation was found among subunits. Moreover, otolith shape appeared to vary spatially, suggesting spatial population structure at fine spatial scale. However, results of the supervised discriminant analyses failed to discriminate among subunits, especially for otolith shape. We suggest that the degree of population segregation may not be strong enough to allow for robust fish assignments. Finally, this study revealed a weak yet existing metapopulation structure of common sole at the fine spatial scale of the EEC based on genotypes and otolith shape, with one subunit being more isolated. Our study argues for the use of complementary tracers to investigate marine population structure.


Asunto(s)
Peces Planos/anatomía & histología , Peces Planos/genética , Membrana Otolítica/anatomía & histología , Análisis de Varianza , Animales , Análisis Discriminante , Análisis de Fourier , Genotipo , Geografía , Dinámica Poblacional , Probabilidad , Reino Unido
11.
Food Chem Toxicol ; 141: 111417, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32437897

RESUMEN

Seafood is an important component of the human diet. With depleting fish stocks and increasing prices, seafood is prone to fraudulent substitution. DNA barcoding has illustrated fraudulent substitution of fishes in retail and restaurants. Whether substitution also occurs in other steps of the supply chain remains largely unknown. DNA barcoding relies on public reference databases for species identification, but these can contain incorrect identifications. The creation of a high quality genetic reference database for 42 European commercially important fishes was initiated containing 145 Cytochrome c oxidase subunit I (COI) and 152 Cytochrome b (cytB) sequences. This database was used to identify substitution rates of Atlantic cod (Gadus morhua) and common sole (Solea solea) along the fish supply chain in Belgium using DNA barcoding. Three out of 132 cod samples were substituted, in catering (6%), import (5%) and fishmongers (3%). Seven out of the 41 processed sole samples were substituted, in wholesale (100%), food services (50%), retailers (20%) and catering (8%). Results show that substitution of G. morhua and S. solea is not restricted to restaurants, but occurs in other parts of the supply chain, warranting for more stringent controls along the supply chain to increase transparency and trust among consumers.


Asunto(s)
Bases de Datos Genéticas , Peces Planos/genética , Abastecimiento de Alimentos , Genética Forense , Fraude , Gadus morhua/genética , Animales , Bélgica , Comercio , Código de Barras del ADN Taxonómico , Especificidad de la Especie
12.
Int J Parasitol ; 50(6-7): 471-486, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32277985

RESUMEN

Lake Tanganyika, East Africa, is the oldest and deepest African Great Lake and harbours one of the most diverse fish assemblages on earth. Two clupeid fishes, Limnothrissa miodon and Stolothrissa tanganicae, constitute a major part of the total fish catch, making them indispensable for local food security. Parasites have been proposed as indicators of stock structure in highly mobile pelagic hosts. We examined the monogeneans Kapentagyrus limnotrissae and Kapentagyrus tanganicanus (Dactylogyridae) infecting these clupeids to explore the parasites' lake-wide population structure and patterns of demographic history. Samples were collected at seven sites distributed across three sub-basins of the lake. Intraspecific morphological variation of the monogeneans (n = 380) was analysed using morphometrics and geomorphometrics of sclerotised structures. Genetic population structure of both parasite species (n = 246) was assessed based on a 415 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Overall, we observed a lack of clear geographical morphological differentiation in both parasites along a north-south axis. This lack of geographical population structure was also reflected by a large proportion of shared haplotypes, and a pattern of seemingly unrestricted gene flow between populations. Significant morphological and genetic differentiation between some populations might reflect temporal differentiation rather than geographical isolation. Overall, the shallow population structure of both species of Kapentagyrus reflects the near-panmictic population structure of both host species as previously reported. Morphological differences related to host species identity of K. tanganicanus were consistent with incipient speciation at the genetic level. Both parasite species experienced a recent demographic expansion, which might be linked to paleohydrological events. Finally, interspecific hybridisation was found in Kapentagyrus, representing the first case in dactylogyrid monogeneans.


Asunto(s)
Cíclidos , Genética de Población , Platelmintos/genética , Animales , Cíclidos/parasitología , Lagos , Filogenia , Tanzanía
13.
Int J Parasitol ; 49(13-14): 1039-1048, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31734338

RESUMEN

Schistosomiasis is widely distributed along the Senegal River Basin (SRB), affecting both the human population and their livestock. Damming of the Senegal River for irrigation purposes in the 1980s induced ecological changes that resulted in a large outbreak of Schistosoma mansoni, followed a few years later by an increase and spread of Schistosoma haematobium infections. The presence of hybrid crosses between the human and cattle schistosomes, S. haematobium and Schistosoma bovis, respectively, is adding complexity to the disease epidemiology in this area, and questions the strength of the species boundary between these two species. This study aimed to investigate the epidemiology of S. haematobium, S. bovis and their hybrids along the Senegal River basin using both microsatellite genetic markers and analysis of mitochondrial and nuclear DNA markers. Human schistosome populations with a S. haematobium cox1 mtDNA profile and those with a S. bovis cox1 mtDNA profile (the so-called hybrids) appear to belong to a single randomly mating population, strongly differentiated from the pure S. bovis found in cattle. These results suggest that, in northern Senegal, a strong species boundary persists between human and cattle schistosome species and there is no prolific admixing of the populations. In addition, we found that in the SRB S. haematobium was spatially more differentiated in comparison to S. mansoni. This may be related either to the presence and susceptibility of the intermediate snail hosts, or to the colonisation history of the parasite.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Quimera/clasificación , Variación Genética , Schistosoma/clasificación , Schistosoma/aislamiento & purificación , Esquistosomiasis/parasitología , Esquistosomiasis/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Quimera/genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , Brotes de Enfermedades , Complejo IV de Transporte de Electrones/genética , Humanos , Repeticiones de Microsatélite , Schistosoma/genética , Esquistosomiasis/epidemiología , Senegal/epidemiología , Análisis de Secuencia de ADN
15.
Mol Biol Rep ; 46(6): 6565-6569, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31402429

RESUMEN

Assessing population genetic structure is a crucial step to support fisheries and conservation management. DNA microsatellite molecular markers are a widely used tool in population genotyping. In the present study, we characterised and developed 14 novel polymorphic microsatellite markers for a decapod crustacean, the Atlantic seabob shrimp Xiphopenaeus kroyeri (Heller, 1862), through rapid and cost-effective Illumina shotgun sequencing and a Galaxy-based bioinformatic pipeline. We genotyped 60 individuals from 2 populations with the newly developed microsatellites, resulting in the detection of 3 to 29 alleles per locus. Four loci deviated from Hardy-Weinberg equilibrium. Cross-amplification in a cryptic congeneric species was successful for eight loci (57%). The microsatellite loci developed in this study will be highly relevant for genetic and evolutionary studies of X. kroyeri, and for the stock management of this commercially exploited species.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Repeticiones de Microsatélite , Penaeidae/genética , Animales , Frecuencia de los Genes , Sitios Genéticos , Marcadores Genéticos , Genética de Población , Análisis de Secuencia de ADN
16.
Sci Total Environ ; 659: 1283-1292, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31096340

RESUMEN

Parasite spillback, the infection of a non-indigenous organism by a native parasite, is a highly important although understudied component of ecological invasion dynamics. Here, through the first analysis of the parasite fauna of lymnaeid gastropods of Lake Kariba (Zimbabwe). We illustrate how the creation of an artificial lake may lead to a cascade of biological invasions in which an invasive aquatic plant promotes the proliferation of invasive gastropods, which in turn alters the epidemiology of trematodiases of potential medical and veterinary importance. Using a new multiplex Rapid Diagnostic PCR assay, we assessed the prevalence of Fasciola sp. infections in the gastropod populations. Both gastropod hosts and trematode parasites were identified using DNA barcoding. We provide the first record of the invasive North-American gastropod Pseudosuccinea columella in Lake Kariba. This species was found at 14 out of 16 sampled sites and its abundance was strongly positively correlated with the abundance of the invasive South-American water hyacinth (Eichhornia crassipes). About 65% of the P. columella specimens analysed were infected with a hitherto unknown Fasciola species. Phylogenetic analyses indicate close affinity to Fasciola hepatica and F. gigantica, which cause fasciolosis, an important liver disease affecting both ruminants and humans. In addition, another non-native Lymnaeid species was found: a Radix sp. that clustered closely with a Vietnamese Radix species. Radix sp. hosted both amphistome and Fasciola trematodes. By linking an invasion cascade and parasite spillback, this study shows how both processes can act in combination to lead to potentially important epidemiological changes.


Asunto(s)
Monitoreo del Ambiente , Especies Introducidas , Lagos/parasitología , Animales , Vectores de Enfermedades , Fasciola hepatica , Gastrópodos/parasitología , Interacciones Huésped-Parásitos , Humanos , Parásitos/clasificación , Parásitos/crecimiento & desarrollo , Filogenia , Rumiantes , Zimbabwe
17.
BMC Evol Biol ; 19(1): 6, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30621593

RESUMEN

BACKGROUND: Clupeid fisheries in Lake Tanganyika (East Africa) provide food for millions of people in one of the world's poorest regions. Due to climate change and overfishing, the clupeid stocks of Lake Tanganyika are declining. We investigate the population structure of the Lake Tanganyika sprat Stolothrissa tanganicae, using for the first time a genomic approach on this species. This is an important step towards knowing if the species should be managed separately or as a single stock. Population structure is important for fisheries management, yet understudied for many African freshwater species. We hypothesize that distinct stocks of S. tanganicae could be present due to the large size of the lake (isolation by distance), limnological variation (adaptive evolution), or past separation of the lake (historical subdivision). On the other hand, high mobility of the species and lack of obvious migration barriers might have resulted in a homogenous population. RESULTS: We performed a population genetic study on wild-caught S. tanganicae through a combination of mitochondrial genotyping (96 individuals) and RAD sequencing (83 individuals). Samples were collected at five locations along a north-south axis of Lake Tanganyika. The mtDNA data had low global FST and, visualised in a haplotype network, did not show phylogeographic structure. RAD sequencing yielded a panel of 3504 SNPs, with low genetic differentiation (FST = 0.0054; 95% CI: 0.0046-0.0066). PCoA, fineRADstructure and global FST suggest a near-panmictic population. Two distinct groups are apparent in these analyses (FST = 0.1338 95% CI: 0.1239,0.1445), which do not correspond to sampling locations. Autocorrelation analysis showed a slight increase in genetic difference with increasing distance. No outlier loci were detected in the RADseq data. CONCLUSION: Our results show at most very weak geographical structuring of the stock and do not provide evidence for genetic adaptation to historical or environmental differences over a north-south axis. Based on these results, we advise to manage the stock as one population, integrating one management strategy over the four riparian countries. These results are a first comprehensive study on the population structure of these important fisheries target species, and can guide fisheries management.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Peces/genética , Genética de Población , Genoma , Lagos , Animales , Secuencia de Bases , ADN Mitocondrial/genética , Análisis Discriminante , Sitios Genéticos , Haplotipos/genética , Filogeografía , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Tanzanía
18.
Evol Appl ; 11(8): 1322-1341, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30151043

RESUMEN

Unraveling adaptive genetic variation represents, in addition to the estimate of population demographic parameters, a cornerstone for the management of aquatic natural living resources, which, in turn, represent the raw material for breeding programs. The turbot (Scophthalmus maximus) is a marine flatfish of high commercial value living on the European continental shelf. While wild populations are declining, aquaculture is flourishing in southern Europe. We evaluated the genetic structure of turbot throughout its natural distribution range (672 individuals; 20 populations) by analyzing allele frequency data from 755 single nucleotide polymorphism discovered and genotyped by double-digest RAD sequencing. The species was structured into four main regions: Baltic Sea, Atlantic Ocean, Adriatic Sea, and Black Sea, with subtle differentiation apparent at the distribution margins of the Atlantic region. Genetic diversity and effective population size estimates were highest in the Atlantic populations, the area of greatest occurrence, while turbot from other regions showed lower levels, reflecting geographical isolation and reduced abundance. Divergent selection was detected within and between the Atlantic Ocean and Baltic Sea regions, and also when comparing these two regions with the Black Sea. Evidence of parallel evolution was detected between the two low salinity regions, the Baltic and Black seas. Correlation between genetic and environmental variation indicated that temperature and salinity were probably the main environmental drivers of selection. Mining around the four genomic regions consistently inferred to be under selection identified candidate genes related to osmoregulation, growth, and resistance to diseases. The new insights are useful for the management of turbot fisheries and aquaculture by providing the baseline for evaluating the consequences of turbot releases from restocking and farming.

19.
Parasitology ; 145(5): 634-645, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29667570

RESUMEN

Hybridization events between Schistosoma species (Digenea, Platyhelminthes) are reported with increasing frequency, largely due to improved access to molecular tools. Nevertheless, little is known about the distribution and frequency of hybrid schistosomes in nature. Screening for hybrids on a large scale is complicated by the need for nuclear and mitochondrial sequence information, precluding a 'simple' barcoding approach. Here we aimed to determine and understand the spatiotemporal distribution of Schistosoma haematobium × Schistosoma bovis hybrids in the Senegal River Basin. From ten villages, distributed over the four main water basins, we genotyped a total of 1236 schistosome larvae collected from human urine samples using a partial mitochondrial cox1 fragment; a subset of 268 parasites was also genotyped using ITS rDNA. Hybrid schistosomes were unevenly distributed, with substantially higher numbers in villages bordering Lac de Guiers than in villages from the Lampsar River and the Middle Valley of the Senegal River. The frequency of hybrids per village was not linked with the prevalence of urinary schistosomiasis in that village. However, we did find a significant positive association between the frequency of hybrids per village and the prevalence of Schistosoma mansoni. We discuss the potential consequences of adopting a barcoding approach when studying hybrids in nature.


Asunto(s)
Código de Barras del ADN Taxonómico , Hibridación Genética , Schistosoma haematobium/genética , Schistosoma/genética , Animales , ADN Mitocondrial/genética , ADN Espaciador Ribosómico/genética , Genotipo , Técnicas de Genotipaje , Humanos , Prevalencia , Schistosoma/clasificación , Schistosoma haematobium/clasificación , Esquistosomiasis/parasitología , Esquistosomiasis/orina , Senegal
20.
Int J Parasitol ; 48(2): 107-115, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29154994

RESUMEN

Here we assess the role of parasite genetic variation in host disease phenotype in human schistosomiasis by implementing concepts and techniques from environmental association analysis in evolutionary epidemiology. Schistosomiasis is a tropical disease that affects more than 200 million people worldwide and is caused by parasitic flatworms belonging to the genus Schistosoma. While the role of host genetics has been extensively studied and demonstrated, nothing is yet known on the contribution of parasite genetic variation to host disease phenotype in human schistosomiasis. In this study microsatellite genotypes of 1561 Schistosoma mansoni larvae collected from 44 human hosts in Senegal were linked to host characteristics such as age, gender, infection intensity, liver and bladder morbidity by means of multivariate regression methods (on each parasite locus separately). This revealed a highly significant association between allelic variation at the parasite locus L46951 and host infection intensity and bladder morbidity. Locus L46951 is located in the 3' untranslated region of the cGMP-dependent protein kinase gene that is expressed in reproductive organs of adult schistosome worms and appears to be linked to egg production. This putative link between parasite genetic variation and schistosomiasis disease phenotype sets the stage for further functional research.


Asunto(s)
Schistosoma mansoni/genética , Esquistosomiasis mansoni/patología , Esquistosomiasis mansoni/parasitología , Adolescente , Animales , Niño , Femenino , Variación Genética , Humanos , Masculino , Repeticiones de Microsatélite , Epidemiología Molecular , Fenotipo , Schistosoma mansoni/clasificación , Esquistosomiasis mansoni/epidemiología , Senegal/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA