Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Arch Oral Biol ; 54(9): 803-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19555922

RESUMEN

Human neutrophil peptides (HNPs) and the human cathelicidin LL-37 are antimicrobial peptides secreted by neutrophils, which play a crucial role in innate immune responses. The aim of this study was to establish a new method for ProteinChip arrays in combination with surface enhanced laser desorption/ionization (SELDI) technology and time-of-flight mass spectrometry to analyze gingival crevicular fluid (GCF) samples. To optimize experimental conditions, four different ProteinChip arrays (NP20; CM10, pH 4; CM10, pH 7; IMAC) along with corresponding binding buffers were tested. GCF samples were collected from patients showing healthy periodontal sites and sites with early signs of inflammation (gingivitis), but with no pocket depth greater than 4 mm. For GCF analysis, NP20 arrays and CM10 (pH 4) arrays showed specific and reproducible profiles in the range of 2.5-30.0 kDa. Donors that demonstrated significantly higher intensity peaks corresponding to the mass of LL-37 (p=0.01) also tended to show greater intensity peaks corresponding to the masses of HNP-1 and HNP-2 in samples from inflamed compared to healthy periodontal sites. The findings indicate that analysis of GCF samples by SELDI-TOF mass spectrometry is a useful approach to simultaneously analyze multiple markers, such as antimicrobial peptides, which may be beneficial for determination of new periodontal risk factors.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/análisis , Líquido del Surco Gingival/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , alfa-Defensinas/análisis , Hemorragia Gingival/metabolismo , Gingivitis/metabolismo , Humanos , Familia de Multigenes , Bolsa Periodontal/metabolismo , Periodoncio/metabolismo , Análisis por Matrices de Proteínas , Catelicidinas
2.
FEBS Lett ; 579(15): 181-7, 2005 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-16021693

RESUMEN

Escherichia coli trigger factor (TF) and DnaK cooperate in the folding of newly synthesized proteins. The combined deletion of the TF-encoding tig gene and the dnaK gene causes protein aggregation and synthetic lethality at 30 degrees C. Here we show that the synthetic lethality of deltatigdeltadnaK52 cells is abrogated either by growth below 30 degrees C or by overproduction of GroEL/GroES. At 23 degrees C deltatigdeltadnaK52 cells were viable and showed only minor protein aggregation. Overproduction of GroEL/GroES, but not of other chaperones, restored growth of deltatigdeltadnaK52 cells at 30 degrees C and suppressed protein aggregation including proteins >/= 60 kDa, which normally require TF and DnaK for folding. GroEL/GroES thus influences the folding of proteins previously identified as DnaK/TF substrates.


Asunto(s)
Chaperonina 10/fisiología , Chaperonina 60/fisiología , Frío , Escherichia coli/crecimiento & desarrollo , Proteínas HSP70 de Choque Térmico/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Chaperonina 10/biosíntesis , Chaperonina 60/biosíntesis , Proteínas de Escherichia coli , Desnaturalización Proteica , Pliegue de Proteína
3.
J Bacteriol ; 186(12): 3777-84, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15175291

RESUMEN

In Escherichia coli, the ribosome-associated chaperone Trigger Factor (TF) promotes the folding of newly synthesized cytosolic proteins. TF is composed of three domains: an N-terminal domain (N), which mediates ribosome binding; a central domain (P), which has peptidyl-prolyl cis/trans isomerase activity and is involved in substrate binding in vitro; and a C-terminal domain (C) with unknown function. We investigated the contributions of individual domains (N, P, and C) or domain combinations (NP, PC, and NC) to the chaperone activity of TF in vivo and in vitro. All fragments comprising the N domain (N, NP, NC) complemented the synthetic lethality of Deltatig DeltadnaK in cells lacking TF and DnaK, prevented protein aggregation in these cells, and cross-linked to nascent polypeptides in vitro. However, DeltatigDeltadnaK cells expressing the N domain alone grew more slowly and showed less viability than DeltatigDeltadnaK cells synthesizing either NP, NC, or full-length TF, indicating beneficial contributions of the P and C domains to TF's chaperone activity. In an in vitro system with purified components, none of the TF fragments assisted the refolding of denatured d-glyceraldehyde-3-phosphate dehydrogenase in a manner comparable to that of wild-type TF, suggesting that the observed chaperone activity of TF fragments in vivo is dependent on their localization at the ribosome. These results indicate that the N domain, in addition to its function to promote binding to the ribosome, has a chaperone activity per se and is sufficient to substitute for TF in vivo.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mutación , Isomerasa de Peptidilprolil/genética , Pliegue de Proteína , Ribosomas/metabolismo , Relación Estructura-Actividad
4.
FEBS Lett ; 559(1-3): 181-7, 2004 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-14960329

RESUMEN

Escherichia coli trigger factor (TF) and DnaK cooperate in the folding of newly synthesized proteins. The combined deletion of the TF-encoding tig gene and the dnaK gene causes protein aggregation and synthetic lethality at 30 degrees C. Here we show that the synthetic lethality of DeltatigDeltadnaK52 cells is abrogated either by growth below 30 degrees C or by overproduction of GroEL/GroES. At 23 degrees C DeltatigDeltadnaK52 cells were viable and showed only minor protein aggregation. Overproduction of GroEL/GroES, but not of other chaperones, restored growth of DeltatigDeltadnaK52 cells at 30 degrees C and suppressed protein aggregation including proteins >/=60 kDa, which normally require TF and DnaK for folding. GroEL/GroES thus influences the folding of proteins previously identified as DnaK/TF substrates.


Asunto(s)
Chaperonina 10/fisiología , Chaperonina 60/fisiología , Escherichia coli/crecimiento & desarrollo , Proteínas HSP70 de Choque Térmico/fisiología , Isomerasa de Peptidilprolil/fisiología , Temperatura , Chaperonina 10/biosíntesis , Chaperonina 60/biosíntesis , Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico/genética , Isomerasa de Peptidilprolil/genética , Desnaturalización Proteica , Pliegue de Proteína
5.
Proc Natl Acad Sci U S A ; 98(25): 14244-9, 2001 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-11724963

RESUMEN

The ribosome-associated chaperone trigger factor (TF) assists the folding of newly synthesized cytosolic proteins in Escherichia coli. Here, we determined the substrate specificity of TF by examining its binding to 2842 membrane-coupled 13meric peptides. The binding motif of TF was identified as a stretch of eight amino acids, enriched in basic and aromatic residues and with a positive net charge. Fluorescence spectroscopy verified that TF exhibited a comparable substrate specificity for peptides in solution. The affinity to peptides in solution was low, indicating that TF requires ribosome association to create high local concentrations of nascent polypeptide substrates for productive interaction in vivo. Binding to membrane-coupled peptides occurred through the central peptidyl-prolyl-cis/trans isomerase (PPIase) domain of TF, however, independently of prolyl residues. Crosslinking experiments showed that a TF fragment containing the PPIase domain linked to the ribosome via the N-terminal domain is sufficient for interaction with nascent polypeptide substrates. Homology modeling of the PPIase domain revealed a conserved FKBP(FK506-binding protein)-like binding pocket composed of exposed aromatic residues embedded in a groove with negative surface charge. The features of this groove complement well the determined substrate specificity of TF. Moreover, a mutation (E178V) in this putative substrate binding groove known to enhance PPIase activity also enhanced TF's association with a prolyl-free model peptide in solution and with nascent polypeptides. This result suggests that both prolyl-independent binding of peptide substrates and peptidyl-prolyl isomerization involve the same binding site.


Asunto(s)
Escherichia coli/metabolismo , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/metabolismo , Sitios de Unión/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sustancias Macromoleculares , Modelos Moleculares , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/metabolismo , Isomerasa de Peptidilprolil/genética , Mutación Puntual , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA