Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Heliyon ; 10(3): e25404, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333823

RESUMEN

Artificial Intelligence (AI) applications and Machine Learning (ML) methods have gained much attention in recent years for their ability to automatically detect patterns in data without being explicitly taught rules. Specific features characterise the ECGs of patients with Brugada Syndrome (BrS); however, there is still ambiguity regarding the correct diagnosis of BrS and its differentiation from other pathologies. This work presents an application of Echo State Networks (ESN) in the Recurrent Neural Networks (RNN) class for diagnosing BrS from the ECG time series. 12-lead ECGs were obtained from patients with a definite clinical diagnosis of spontaneous BrS Type 1 pattern (Group A), patients who underwent provocative pharmacological testing to induce BrS type 1 pattern, which resulted in positive (Group B) or negative (Group C), and control subjects (Group D). One extracted beat in the V2 lead was used as input, and the dataset was used to train and evaluate the ESN model using a double cross-validation approach. ESN performance was compared with that of 4 cardiologists trained in electrophysiology. The model performance was assessed in the dataset, with a correct global diagnosis observed in 91.5 % of cases compared to clinicians (88.0 %). High specificity (94.5 %), sensitivity (87.0 %) and AUC (94.7 %) for BrS recognition by ESN were observed in Groups A + B vs. C + D. Our results show that this ML model can discriminate Type 1 BrS ECGs with high accuracy comparable to expert clinicians. Future availability of larger datasets may improve the model performance and increase the potential of the ESN as a clinical support system tool for daily clinical practice.

2.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445659

RESUMEN

Curcumin is a natural polyphenol that exhibits a variety of beneficial effects on health, including anti-inflammatory, antioxidant, and hepato-protective properties. Due to its poor water solubility and membrane permeability, in the present study, we prepared and characterized a water-stable, freely dispersible nanoformulation of curcumin. Although the potential of curcumin nanoformulations in the hepatic field has been studied, there are no investigations on their effect in fibrotic pathological conditions involving cholangiocytes. Exploiting an in vitro model of transforming growth factor-ß (TGF-ß)-stimulated cholangiocytes, we applied the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)-based quantitative proteomic approaches to study the proteome modulation induced by curcumin nanoformulation. Our results confirmed the well-documented anti-inflammatory properties of this nutraceutic, highlighting the induction of programmed cell death as a mechanism to counteract the cellular damages induced by TGF-ß. Moreover, curcumin nanoformulation positively influenced the expression of several proteins involved in TGF-ß-mediated fibrosis. Given the crucial importance of deregulated cholangiocyte functions during cholangiopathies, our results provide the basis for a better understanding of the mechanisms associated with this pathology and could represent a rationale for the development of more targeted therapies.


Asunto(s)
Curcumina , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Curcumina/farmacología , Proteómica , Hígado/metabolismo , Fibrosis , Antiinflamatorios
3.
STAR Protoc ; 4(2): 102328, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300824

RESUMEN

Vascular calcification is a systemic disease characterized by calcium salt deposition within vascular walls. Here, we present a protocol for establishing an advanced dynamic in vitro co-culture system using endothelial and smooth muscle cells to replicate vascular tissue complexity. We describe steps for cell culture and seeding in a double-flow bioreactor that recreates the action of blood in humans. We then detail the induction of calcification, setting up of the bioreactor, followed by cell viability assessment and calcium quantification.

4.
Life (Basel) ; 13(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36836785

RESUMEN

BACKGROUND AND AIMS: Coronary atherosclerosis is a chronic non-resolving inflammatory process wherein the interaction of innate immune cells and platelets plays a major role. Circulating neutrophils, in particular, adhere to the activated endothelium and migrate into the vascular wall, promoting monocyte recruitment and influencing plaque phenotype and stability at all stages of its evolution. We aimed to evaluate, by flow cytometry, if blood neutrophil number and phenotype-including their phenotypic relationships with platelets, monocytes and lymphocytes-have an association with lipid-rich necrotic core volume (LRNCV), a generic index of coronary plaque vulnerability, in a group of stable patients with chronic coronary syndrome (CCS). METHODS: In 55 patients, (68.53 ± 1.07 years of age, mean ± SEM; 71% male), the total LRNCV in each subject was assessed by a quantitative analysis of all coronary plaques detected by computed tomography coronary angiography (CTCA) and was normalized to the total plaque volume. The expression of CD14, CD16, CD18, CD11b, HLA-DR, CD163, CCR2, CCR5, CX3CR1, CXCR4 and CD41a cell surface markers was quantified by flow cytometry. Adhesion molecules, cytokines and chemokines, as well as MMP9 plasma levels, were measured by ELISA. RESULTS: On a per-patient basis, LRNCV values were positively associated, by a multiple regression analysis, with the neutrophil count (n°/µL) (p = 0.02), neutrophil/lymphocyte ratio (p = 0.007), neutrophil/platelet ratio (p = 0.01), neutrophil RFI CD11b expression (p = 0.02) and neutrophil-platelet adhesion index (p = 0.01). Significantly positive multiple regression associations of LRNCV values with phenotypic ratios between neutrophil RFI CD11b expression and several lymphocyte and monocyte surface markers were also observed. In the bivariate correlation analysis, a significantly positive association was found between RFI values of neutrophil-CD41a+ complexes and neutrophil RFI CD11b expression (p < 0.0001). CONCLUSIONS: These preliminary findings suggest that a sustained increase in circulating neutrophils, together with the up-regulation of the integrin/activation membrane neutrophil marker CD11b may contribute, through the progressive intra-plaque accumulation of necrotic/apoptotic cells exceeding the efferocytosis/anti-inflammatory capacity of infiltrating macrophages and lymphocytes, to the relative enlargement of the lipid-rich necrotic core volume of coronary plaques in stable CAD patients, thus increasing their individual risk of acute complication.

5.
Biomedicines ; 11(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36830801

RESUMEN

Plastic use dramatically increased over the past few years. Besides obvious benefits, the consequent plastic waste and mismanagement in disposal have caused ecological problems. Plastic abandoned in the environment is prone to segregation, leading to the generation of microplastics (MPs) and nanoplastics (NPs), which can reach aquatic and terrestrial organisms. MPs/NPs in water can access fish's bodies through the gills, triggering an inflammatory response in loco. Furthermore, from the gills, plastic fragments can be transported within the circulatory system altering blood biochemical parameters and hormone levels and leading to compromised immunocompetence and angiogenesis. In addition, it was also possible to observe an unbalanced ROS production, damage in vascular structure, and enhanced thrombosis. MPs/NPs led to cardiotoxicity, pericardial oedema, and impaired heart rate in fish cardiac tissue. MPs/NPs effects on aquatic organisms pose serious health hazards and ecological consequences because they constitute the food chain for humans. Once present in the mammalian body, plastic particles can interact with circulating cells, eliciting an inflammatory response, with genotoxicity and cytotoxicity of immune cells, enhanced haemolysis, and endothelium adhesion. The interaction of MPs/NPs with plasma proteins allows their transport to distant organs, including the heart. As a consequence of plastic fragment internalisation into cardiomyocytes, oxidative stress was increased, and metabolic parameters were altered. In this scenario, myocardial damage, fibrosis and impaired electrophysiological values were observed. In summary, MPs/NPs are an environmental stressor for cardiac function in living organisms, and a risk assessment of their influence on the cardiovascular system certainly merits further analysis.

6.
Biomedicines ; 10(10)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36289753

RESUMEN

Vascular calcification is a systemic disease contributing to cardiovascular morbidity and mortality. The pathophysiology of vascular calcification involves calcium salt deposition by vascular smooth muscle cells that exhibit an osteoblast-like phenotype. Multiple conditions drive the phenotypic switch and calcium deposition in the vascular wall; however, the exact molecular mechanisms and the connection between vascular smooth muscle cells and other cell types are not fully elucidated. In this hazy landscape, effective treatment options are lacking. Due to the pathophysiological complexity, several research models are available to evaluate different aspects of the calcification process. This review gives an overview of the in vitro cell models used so far to study the molecular processes underlying vascular calcification. In addition, relevant natural and synthetic compounds that exerted anticalcifying properties in in vitro systems are discussed.

7.
Front Bioeng Biotechnol ; 10: 980393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263357

RESUMEN

The overall increase in cardiovascular diseases and, specifically, the ever-rising exposure to cardiotoxic compounds has greatly increased in vivo animal testing; however, mainly due to ethical concerns related to experimental animal models, there is a strong interest in new in vitro models focused on the human heart. In recent years, human pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) emerged as reference cell systems for cardiac studies due to their biological similarity to primary CMs, the flexibility in cell culture protocols, and the capability to be amplified several times. Furthermore, the ability to be genetically reprogrammed makes patient-derived hiPSCs, a source for studies on personalized medicine. In this mini-review, the different models used for in vitro cardiac studies will be described, and their pros and cons analyzed to help researchers choose the best fitting model for their studies. Particular attention will be paid to hiPSC-CMs and three-dimensional (3D) systems since they can mimic the cytoarchitecture of the human heart, reproducing its morphological, biochemical, and mechanical features. The advantages of 3D in vitro heart models compared to traditional 2D cell cultures will be discussed, and the differences between scaffold-free and scaffold-based systems will also be spotlighted.

8.
Heart Vessels ; 37(12): 2137-2149, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35857064

RESUMEN

Endothelial and smooth muscle cell dysfunction is an early event at the onset of atherosclerosis, a heterogeneous and multifactorial pathology of the vascular wall. Bone morphogenetic protein (BMP)-4, a mechanosensitive autocrine cytokine, and BMPR-1a, BMPR-1b, BMPR-2 specific receptors play a key role in atherosclerotic plaque formation and vascular calcification and BMP4 is regarded as a biomarker of endothelial cell activation. The study aimed to examine the BMP4 system expression by Real-Time PCR in Human Coronary Artery Endothelial (HCAECs) and Smooth Muscle Cells (HCASMCs) under different flow rates determining low or physiological shear stress in the presence/absence of medicated Bioresorbable Vascular Scaffold (BVS). The HCAEC and HCASMC were subjected to 1-10-20 dyne/cm2 shear stress in a laminar flow bioreactor system, with/without BVS+ Everolimus (600 nM). In HCAECs without BVS the BMP4 expression was similar at 1, 20 dyne/cm2 decreasing at 10 dyne/cm2, while adding BVS+ Everolimus, it decreased both at 1, 10 compared to 20 dyne/cm2. In HCASMCs without BVS + Everolimus, the BMP4 system mRNA expression was significantly reduced at 1, 10 dyne/cm2 compared to 20 dyne/cm2, while in the presence of BVS+ Everolimus, higher BMP4 mRNA levels were observed at 10 compared to 1, 20 dyne/cm2. In HCAECs and HCASMCs BMPRs were expressed in all experimental conditions except for BMPR-1a at 1 dyne/cm2 in HCAEC. Significant correlations were found between BMP4 and BMPRs. The more negligible on BMP4 expression due to low shear stress in HCAEC compared to HCASMC and its reduction in the presence of BVS+ Everolimus at low shear stress highlighted the protection of BMP4-mediated against endothelial dysfunction and neoatherogenesis.


Asunto(s)
Aterosclerosis , Vasos Coronarios , Humanos , Vasos Coronarios/metabolismo , Everolimus/farmacología , Implantes Absorbibles , Miocitos del Músculo Liso/metabolismo , Aterosclerosis/genética , ARN Mensajero/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-35742729

RESUMEN

The association between environmental exposure to toxic substances and cardiovascular diseases (CVDs) in humans is widely recognized. However, the analysis of underlying pathophysiological mechanisms is essential to target meaningful endpoints of cardiotoxicity and allow a close-to-real life understanding of the role of chronic and acute exposure to multiple toxicants. The aim of this study is to outline the process for a systematic review of the literature that investigates the relationship between environmental pollution and left ventricular dysfunction. This systematic review and meta-analysis protocol will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-P) statement. PubMed, Embase, and Web of Science databases will be searched without applying search filters. Two independent reviewers will screen all titles and abstracts and identify the articles to be included in the synthesis. The risk of bias (RoB) will be assessed using an instrument developed for non-randomized (i.e., observational) studies (NRS) of environmental exposures. The results of cohort, case-control, cross-sectional, time-series, and case-crossover studies will be extracted and presented in tables considering different population subgroups and length of exposure. This protocol will be expected to provide a sound basis for selecting toxic chemicals and pollutants to contribute with the epidemiological evidence to the in vitro testing protocol within the EU-funded ALTERNATIVE Project.


Asunto(s)
Contaminantes Ambientales , Enfermedades Profesionales , Exposición Profesional , Disfunción Ventricular Izquierda , Estudios Transversales , Contaminantes Ambientales/análisis , Contaminantes Ambientales/toxicidad , Humanos , Metaanálisis como Asunto , Estudios Observacionales como Asunto , Exposición Profesional/análisis , Literatura de Revisión como Asunto , Revisiones Sistemáticas como Asunto , Organización Mundial de la Salud
10.
Biology (Basel) ; 11(4)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35453765

RESUMEN

TGF-ß is a cytokine implicated in multiple cellular responses, including cell cycle regulation, fibrogenesis, angiogenesis and immune modulation. In response to pro-inflammatory and chemotactic cytokines and growth factors, cholangiocytes prime biliary damage, characteristic of cholangiopathies and pathologies that affect biliary tree. The effects and signaling related to TGF-ß in cholangiocyte remains poorly investigated. In this study, the cellular response of human cholangiocytes to TGF-ß was examined. Wound-healing assay, proliferation assay and cell cycle analyses were used to monitor the changes in cholangiocyte behavior following 24 and 48 h of TGF-ß stimulation. Moreover, proteomic approach was used to identify proteins modulated by TGF-ß treatment. Our study highlighted a reduction in cholangiocyte proliferation and a cell cycle arrest in G0/G1 phase following TGF-ß treatment. Moreover, proteomic analysis allowed the identification of four downregulated proteins (CaM kinase II subunit delta, caveolin-1, NipSnap1 and calumin) involved in Ca2+ homeostasis. Accordingly, Gene Ontology analysis highlighted that the plasma membrane and endoplasmic reticulum are the cellular compartments most affected by TGF-ß. These results suggested that the effects of TGF-ß in human cholangiocytes could be related to an imbalance of intracellular calcium homeostasis. In addition, for the first time, we correlated calumin and NipSnap1 to TGF-ß signaling.

11.
Biomedicines ; 10(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35327367

RESUMEN

BACKGROUND: Atherosclerosis is a chronic inflammatory disease. The balance between pro- and anti-inflammatory factors, acting on the arterial wall, promotes less or more coronary plaque macro-calcification, respectively. We investigated the association between monocyte phenotypic polarization and CTCA-assessed plaque dense-calcium volume (DCV) in patients with stable coronary artery disease (CAD). METHODS: In 55 patients, individual DCV component was assessed by quantitative CTCA and normalized to total plaque volume. Flow cytometry expression of CD14, CD16, CD18, CD11b, HLA-DR, CD163, CCR2, CCR5, CX3CR1 and CXCR4 was quantified. Adhesion molecules and cytokines were measured by ELISA. RESULTS: DCV values were significantly associated, by multiple regression analysis, with the expression (RFI) of CCR5 (p = 0.04), CX3CR1 (p = 0.03), CCR2 (p = 0.02), CD163 (p = 0.005) on all monocytes, and with the phenotypic M2-like polarization ratio, RFI CCR5/CD11b (p = 0.01). A positive correlation with the increased expression of chemokines receptors CCR2, CCR5 and CX3CR1 on subsets Mon1 was also present. Among cytokines, the ratio between IL-10 and IL-6 was found to be strongly associated with DCV (p = 0.009). CONCLUSIONS: The association between DCV and M2-like phenotypic polarization of circulating monocytes indicates that plaque macro-calcification in stable CAD may be partly modulated by an anti-inflammatory monocyte functional state, as evidenced by cell membrane receptor patterns.

12.
BMJ Open ; 11(7): e047677, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34244268

RESUMEN

OBJECTIVE: Externally validated pretest probability models for risk stratification of subjects with chest pain and suspected stable coronary artery disease (CAD), determined through invasive coronary angiography or coronary CT angiography, are analysed to characterise the best validation procedures in terms of discriminatory ability, predictive variables and method completeness. DESIGN: Systematic review and meta-analysis. DATA SOURCES: Global Health (Ovid), Healthstar (Ovid) and MEDLINE (Ovid) searched on 22 April 2020. ELIGIBILITY CRITERIA: We included studies validating pretest models for the first-line assessment of patients with chest pain and suspected stable CAD. Reasons for exclusion: acute coronary syndrome, unstable chest pain, a history of myocardial infarction or previous revascularisation; models referring to diagnostic procedures different from the usual practices of the first-line assessment; univariable models; lack of quantitative discrimination capability. METHODS: Eligibility screening and review were performed independently by all the authors. Disagreements were resolved by consensus among all the authors. The quality assessment of studies conforms to the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). A random effects meta-analysis of area under the receiver operating characteristic curve (AUC) values for each validated model was performed. RESULTS: 27 studies were included for a total of 15 models. Besides age, sex and symptom typicality, other risk factors are smoking, hypertension, diabetes mellitus and dyslipidaemia. Only one model considers genetic profile. AUC values range from 0.51 to 0.81. Significant heterogeneity (p<0.003) was found in all but two cases (p>0.12). Values of I2 >90% for most analyses and not significant meta-regression results undermined relevant interpretations. A detailed discussion of individual results was then carried out. CONCLUSIONS: We recommend a clearer statement of endpoints, their consistent measurement both in the derivation and validation phases, more comprehensive validation analyses and the enhancement of threshold validations to assess the effects of pretest models on clinical management. PROSPERO REGISTRATION NUMBER: CRD42019139388.


Asunto(s)
Enfermedad de la Arteria Coronaria , Dolor en el Pecho , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Humanos , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo
13.
Biomed Res Int ; 2018: 5359830, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356351

RESUMEN

BACKGROUND: In the pathogenesis of atherosclerosis, a central role is represented by endothelial inflammation with influx of chemokine-mediated leukocytes in the vascular wall. Aim of this study was to analyze the effect of different shear stresses on endothelial gene expression and compute gene network involved in atherosclerotic disease, in particular to homeostasis, inflammatory cell migration, and apoptotic processes. METHODS: HUVECs were subjected to shear stress of 1, 5, and 10 dyne/cm2 in a Flow Bioreactor for 24 hours to compare gene expression modulation. Total RNA was analyzed by Affymetrix technology and the expression of two specific genes (CXCR4 and ICAM-1) was validated by RT-PCR. To highlight possible regulations between genes and as further validation, a bioinformatics analysis was performed. RESULTS: At low shear stress (1 dyne/cm2) we observed the following: (a) strong upregulation of CXCR4; (b) mild upregulation of Caspase-8; (c) mild downregulation of ICAM-1; (d) marked downexpression of TNFAIP3. Bioinformatics analysis showed the presence of network composed by 59 new interactors (14 transcription factors and 45 microRNAs) appearing strongly related to shear stress. CONCLUSIONS: The significant modulation of these genes at low shear stress and their close relationships through transcription factors and microRNAs suggest that all may promote an initial inflamed endothelial cell phenotype, favoring the atherosclerotic disease.


Asunto(s)
Aterosclerosis/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Modelos Cardiovasculares , Resistencia al Corte , Estrés Fisiológico , Aterosclerosis/patología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos
14.
Biomed Mater ; 13(5): 055006, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29869614

RESUMEN

Three-dimensional (3D) tissue models offer new tools in the study of diseases. In the case of the engineering of cardiac muscle, a realistic goal would be the design of a scaffold able to replicate the tissue-specific architecture, mechanical properties, and chemical composition, so that it recapitulates the main functions of the tissue. This work is focused on the design and preliminary biological validation of an innovative polyester urethane (PUR) scaffold mimicking cardiac tissue properties. The porous scaffold was fabricated by thermally induced phase separation (TIPS) from poly(ε-caprolactone) diol, 1,4-butanediisocyanate, and l-lysine ethyl ester. Morphological and mechanical scaffolds characterization was accomplished by confocal microscopy, and micro-tensile and compression techniques. Scaffolds were then functionalized with fibronectin by plasma treatment, and the surface treatment was studied by x-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared spectra, and contact angle measurements. Primary rat neonatal cardiomyocytes were seeded on scaffolds, and their colonization, survival, and beating activity were analyzed for 14 days. Signal transduction pathways and apoptosis involved in cells, the structural development of the heart, and its metabolism were analyzed. PUR scaffolds showed a porous-aligned structure and mechanical properties consistent with that of the myocardial tissue. Cardiomyocytes plated on the scaffolds showed a high survival rate and a stable beating activity. Serine/threonine kinase (AKT) and extracellular signal-regulated kinases (ERK) phosphorylation was higher in cardiomyocytes cultured on the PUR scaffold compared to those on tissue culture plates. Real-time polymerase chain reaction analysis showed a significant modulation at 14 days of cardiac muscle (MYH7, prepro-ET-1), hypertrophy-specific (CTGF), and metabolism-related (SLC2a1, PFKL) genes in PUR scaffolds.


Asunto(s)
Biomimética , Butanos/química , Lisina/química , Miocitos Cardíacos/metabolismo , Nitrilos/química , Poliésteres/química , Poliuretanos/química , Animales , Apoptosis , Células Cultivadas , Fuerza Compresiva , Fibronectinas/metabolismo , Humanos , Imagenología Tridimensional , Microscopía Confocal , Miocardio/metabolismo , Miocitos Cardíacos/citología , Nanofibras/química , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Ingeniería de Tejidos/métodos , Andamios del Tejido
15.
PLoS One ; 13(2): e0192824, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29438401

RESUMEN

Metabolic disorders due to over-nutrition are a major global health problem, often associated with obesity and related morbidities. Obesity is peculiar to humans, as it is associated with lifestyle and diet, and so difficult to reproduce in animal models. Here we describe a model of human central adiposity based on a 3-tissue system consisting of a series of interconnected fluidic modules. Given the causal link between obesity and systemic inflammation, we focused primarily on pro-inflammatory markers, examining the similarities and differences between the 3-tissue model and evidence from human studies in the literature. When challenged with high levels of adiposity, the in-vitro system manifests cardiovascular stress through expression of E-selectin and von Willebrand factor as well as systemic inflammation (expressing IL-6 and MCP-1) as observed in humans. Interestingly, most of the responses are dependent on the synergic interaction between adiposity and the presence of multiple tissue types. The set-up has the potential to reduce animal experiments in obesity research and may help unravel specific cellular mechanisms which underlie tissue response to nutritional overload.


Asunto(s)
Inflamación/fisiopatología , Modelos Biológicos , Obesidad Abdominal/fisiopatología , Vasculitis/fisiopatología , Adiposidad , Albúminas/biosíntesis , Animales , Biomarcadores/metabolismo , Reactores Biológicos , Técnicas de Cocultivo/métodos , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Inflamación/complicaciones , Mediadores de Inflamación/fisiología , Grasa Intraabdominal/fisiopatología , Dispositivos Laboratorio en un Chip , Lípidos/biosíntesis , Obesidad Abdominal/complicaciones , Vasculitis/complicaciones
16.
J Biomed Mater Res B Appl Biomater ; 106(8): 2750-2762, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29206329

RESUMEN

The aim of this study was set-up and test of gelatin and carbon nanotubes scaffolds. Gelatin-based (5%) genipin cross-linked (0.2%) scaffolds embedding single-walled carbon nanotubes (SWCNTs, 0.3, 0.5, 0.7, 0.9, and 1.3% w/w) were prepared and mechanically/electrically characterized. For biological evaluation, H9c2 cell line was cultured for 10 days. Cytotoxicity, cell growth and differentiation, immunohistochemistry, and real-time PCR analysis were performed. Myoblast and cardiac differentiation were obtained by serum reduction to 1% (C1% ) and stimulation with 50 nM all trans-retinoic acid (CRA ), respectively. Immunohistochemistry showed elongated myotubes in C1% while round and multinucleated cells in CRA with also a significantly increased expression of natriuretic peptides (NP) and ET-1 receptors in parallel with a decreased ET-1. On scaffolds, cell viability was similar for Gel-SWCNT0.3%/0.9% ; NP and ET systems expression decreased in both concentrations with respect to control and CX-43, mainly due to a lacking of complete differentiation in cardiac phenotype during that time. Although further analyses on novel biomaterials are necessary, these results represent a useful starting point to develop new biomaterial-based scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2750-2762, 2018.


Asunto(s)
Diferenciación Celular , Gelatina/química , Corazón/fisiología , Mioblastos Cardíacos/metabolismo , Nanotubos de Carbono/química , Regeneración , Andamios del Tejido/química , Animales , Línea Celular , Regulación de la Expresión Génica , Ensayo de Materiales , Proteínas Musculares/biosíntesis , Mioblastos Cardíacos/citología , Ratas
17.
J Biomed Mater Res B Appl Biomater ; 105(7): 2045-2052, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27388578

RESUMEN

AIMS: The industrial development of a product requires performing a deep analysis to highlight its characteristics useful for future design. The clinical use of a product stimulates knowledge improvement about it in a constant effort of progress. This work shows the biological characterization of CMC composite mesh. CMC polypropylene prosthesis was seeded with Human fibroblast BJ. Samples (cells and medium) were collected at different time points in order to perform different analysis: inflammatory markers quantification; collagens immunohistochemistry; matrix metalloproteinases zimography; extracellular matrix proteomic profile. FINDINGS: CMC presented a good cell viability rate and cell growth during the 21 days. The inflammatory profile showed an initial secretion of anti-inflammatory IL-10 and a final increase of pro-inflammatory IL-6. Immunocytochemistry highlighted a similar Collagen type I/type III ratio. The proteomic analysis evidenced the ECM protein content profile composed, mainly, by collagens, fibronectin, laminin. MMPs resulted both expressed when in contact to mesh. CONCLUSIONS: CMC shows a good cell biocompatibility and growth. The increase of pro-inflammatory markers could stimulate proliferation, influencing the integration process in human body. Proteomics highlights the ECM modulation by CMC. An integrated investigation of these biological analyses with mechanical data should improve the design process of a new product. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2045-2052, 2017.


Asunto(s)
Hernia Abdominal/metabolismo , Ensayo de Materiales , Proteómica , Mallas Quirúrgicas , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Hernia Abdominal/cirugía , Herniorrafia , Humanos , Inmunohistoquímica , Interleucina-10/metabolismo , Interleucina-6/metabolismo
18.
BMC Med Imaging ; 16: 9, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26785613

RESUMEN

BACKGROUND: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). METHODS: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel's centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. RESULTS: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. CONCLUSIONS: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena.


Asunto(s)
Vasos Coronarios/diagnóstico por imagen , Imagenología Tridimensional/métodos , Placa Aterosclerótica/diagnóstico por imagen , Ultrasonografía Intervencional/métodos , Algoritmos , Angiografía Coronaria/métodos , Humanos , Tomografía Computarizada por Rayos X/métodos
19.
Comput Methods Programs Biomed ; 121(3): 161-74, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26165637

RESUMEN

Imaging systems transmit and acquire signals and are subject to errors including: error sources, signal variations or possible calibration errors. These errors are included in all imaging systems for atherosclerosis and are propagated to methodologies implemented for the segmentation and characterization of atherosclerotic plaque. In this paper, we present a study for the propagation of imaging errors and image segmentation errors in plaque characterization methods applied to 2D vascular images. More specifically, the maximum error that can be propagated to the plaque characterization results is estimated, assuming worst-case scenarios. The proposed error propagation methodology is validated using methods applied to real datasets, obtained from intravascular imaging (IVUS) and optical coherence tomography (OCT) for coronary arteries, and magnetic resonance imaging (MRI) for carotid arteries. The plaque characterization methods have recently been presented in the literature and are able to detect the vessel borders, and characterize the atherosclerotic plaque types. Although, these methods have been extensively validated using as gold standard expert annotations, by applying the proposed error propagation methodology a more realistic validation is performed taking into account the effect of the border detection algorithms error and the image formation error into the final results. The Pearson's coefficient of the detected plaques has changed significantly when the method was applied to IVUS and OCT, while there was not any variation when the method was applied to MRI data.


Asunto(s)
Placa Aterosclerótica/patología , Humanos , Imagen por Resonancia Magnética , Tomografía de Coherencia Óptica
20.
Comput Biol Med ; 65: 168-76, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25771781

RESUMEN

A framework for the inflation of micro-CT and histology data using intravascular ultrasound (IVUS) images, is presented. The proposed methodology consists of three steps. In the first step the micro-CT/histological images are manually co-registered with IVUS by experts using fiducial points as landmarks. In the second step the lumen of both the micro-CT/histological images and IVUS images are automatically segmented. Finally, in the third step the micro-CT/histological images are inflated by applying a transformation method on each image. The transformation method is based on the IVUS and micro-CT/histological contour difference. In order to validate the proposed image inflation methodology, plaque areas in the inflated micro-CT and histological images are compared with the ones in the IVUS images. The proposed methodology for inflating micro-CT/histological images increases the sensitivity of plaque area matching between the inflated and the IVUS images (7% and 22% in histological and micro-CT images, respectively).


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía Intervencional/métodos , Microtomografía por Rayos X/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA