Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 15(42): 8532-8542, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31633145

RESUMEN

We analyse the rheology of gravity-driven, dry granular flows in experiments where individual forces within the flow bulk are measured. We release photoelastic discs at the top of an incline to create a quasi-static erodible bed over which flows a steady 2D avalanche. The flowing layers we produce are dense (φ ≈ 0.8), thin (h ≈ 10d), and in the slow to intermediate flow regime (I = 0.1 to 1). Using particle tracking and photoelastic force measurements we report coarse-grained profiles for packing fraction, velocity, shear rate, inertial number, and stress tensor components. In addition, we define a quantitative measure for the rate of generation of new force chain networks and we observe that fluctuations extend below the boundary between dense flow and quasi-static layers. Finally, we evaluate several existing definitions for granular fluidity, and make comparisons among them and the behaviour of our experimentally-measured stress tensor components. Our measurements of the non-dimensional stress ratio µ show that our experiments lie within the local rheological regime, yet we observe rearrangements of the force network extending into the quasi-static layer where shear rates vanish. This elucidates why non-local rheological models rely on the notion of stress diffusion, and we thus propose non-local effects may in fact be dependent on the local force network fluctuation rate.

2.
Phys Rev E ; 100(1-1): 012902, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31499875

RESUMEN

In this study, we perform experiments that reveal the distribution of dynamic forces in the bulk of granular free-surface flows. We release photoelastic disks from an incline to create steady two-dimensional avalanches. These gravity-driven dry granular flows are in the slow to intermediate regime (I≤1), dense (φ≈0.8), and thin (h≈10d). The transition between solidlike (quasisteady) and fluidlike (inertial) regimes is observable for certain experimental settings. We measure constant density and quasilinear velocity profiles through particle tracking at several points down the chute, for two different basal topographies. The photoelastic technique allows the visualization and quantification of instantaneous forces transmitted between particles during individual collisions. From the measured forces we obtain coarse-grained profiles of all stress tensor components at various positions along the chute. The discreteness of the system leads to highly fluctuating individual force chains which form preferentially in the directions of the bulk external forces: in this case, gravity and shear. The behavior of the coarse-grained stress tensor within a dynamic granular flow is analogous to that of a continuous fluid flow, in that we observe a hydrostatic increase of the mean pressure with depth. Furthermore, we identify a preferential direction for the principal stress orientation, which depends on the local magnitudes of the frictional and gravitational forces. These results allow us to draw an analogy between discrete and continuous flow models.

3.
Phys Rev E ; 97(6-1): 060901, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30011504

RESUMEN

We experimentally investigate discrete avalanches of grains, driven by a low inflow rate, on an erodible pile in a channel. We observe intermittency between one regime, in which avalanches are quasiperiodic and system spanning, and another, in which they pass at irregular intervals and have a power-law size distribution. Observations are robust to changes of inflow rate and grain type and require no tuning of external parameters. We demonstrate that the state of the pile's surface determines whether avalanche fronts propagate to the end of the channel or stop partway down, and we introduce a toy model for the latter case that reproduces the observed power-law size distribution. We suggest direct applications to avalanches of pharmaceutical and geophysical grains, and the possibility of reconciling the "self-organized criticality" predicted by several authors with the hysteretic behavior described by others.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA